include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {136,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {136,4}*1088b
if this polytope has a name.
Group : SmallGroup(1088,719)
Rank : 3
Schlafli Type : {136,4}
Number of vertices, edges, etc : 136, 272, 4
Order of s0s1s2 : 136
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {68,4}*544
4-fold quotients : {68,2}*272, {34,4}*272
8-fold quotients : {34,2}*136
16-fold quotients : {17,2}*68
17-fold quotients : {8,4}*64b
34-fold quotients : {4,4}*32
68-fold quotients : {2,4}*16, {4,2}*16
136-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,273)( 2,289)( 3,288)( 4,287)( 5,286)( 6,285)( 7,284)( 8,283)
( 9,282)( 10,281)( 11,280)( 12,279)( 13,278)( 14,277)( 15,276)( 16,275)
( 17,274)( 18,290)( 19,306)( 20,305)( 21,304)( 22,303)( 23,302)( 24,301)
( 25,300)( 26,299)( 27,298)( 28,297)( 29,296)( 30,295)( 31,294)( 32,293)
( 33,292)( 34,291)( 35,324)( 36,340)( 37,339)( 38,338)( 39,337)( 40,336)
( 41,335)( 42,334)( 43,333)( 44,332)( 45,331)( 46,330)( 47,329)( 48,328)
( 49,327)( 50,326)( 51,325)( 52,307)( 53,323)( 54,322)( 55,321)( 56,320)
( 57,319)( 58,318)( 59,317)( 60,316)( 61,315)( 62,314)( 63,313)( 64,312)
( 65,311)( 66,310)( 67,309)( 68,308)( 69,358)( 70,374)( 71,373)( 72,372)
( 73,371)( 74,370)( 75,369)( 76,368)( 77,367)( 78,366)( 79,365)( 80,364)
( 81,363)( 82,362)( 83,361)( 84,360)( 85,359)( 86,341)( 87,357)( 88,356)
( 89,355)( 90,354)( 91,353)( 92,352)( 93,351)( 94,350)( 95,349)( 96,348)
( 97,347)( 98,346)( 99,345)(100,344)(101,343)(102,342)(103,375)(104,391)
(105,390)(106,389)(107,388)(108,387)(109,386)(110,385)(111,384)(112,383)
(113,382)(114,381)(115,380)(116,379)(117,378)(118,377)(119,376)(120,392)
(121,408)(122,407)(123,406)(124,405)(125,404)(126,403)(127,402)(128,401)
(129,400)(130,399)(131,398)(132,397)(133,396)(134,395)(135,394)(136,393)
(137,409)(138,425)(139,424)(140,423)(141,422)(142,421)(143,420)(144,419)
(145,418)(146,417)(147,416)(148,415)(149,414)(150,413)(151,412)(152,411)
(153,410)(154,426)(155,442)(156,441)(157,440)(158,439)(159,438)(160,437)
(161,436)(162,435)(163,434)(164,433)(165,432)(166,431)(167,430)(168,429)
(169,428)(170,427)(171,460)(172,476)(173,475)(174,474)(175,473)(176,472)
(177,471)(178,470)(179,469)(180,468)(181,467)(182,466)(183,465)(184,464)
(185,463)(186,462)(187,461)(188,443)(189,459)(190,458)(191,457)(192,456)
(193,455)(194,454)(195,453)(196,452)(197,451)(198,450)(199,449)(200,448)
(201,447)(202,446)(203,445)(204,444)(205,494)(206,510)(207,509)(208,508)
(209,507)(210,506)(211,505)(212,504)(213,503)(214,502)(215,501)(216,500)
(217,499)(218,498)(219,497)(220,496)(221,495)(222,477)(223,493)(224,492)
(225,491)(226,490)(227,489)(228,488)(229,487)(230,486)(231,485)(232,484)
(233,483)(234,482)(235,481)(236,480)(237,479)(238,478)(239,511)(240,527)
(241,526)(242,525)(243,524)(244,523)(245,522)(246,521)(247,520)(248,519)
(249,518)(250,517)(251,516)(252,515)(253,514)(254,513)(255,512)(256,528)
(257,544)(258,543)(259,542)(260,541)(261,540)(262,539)(263,538)(264,537)
(265,536)(266,535)(267,534)(268,533)(269,532)(270,531)(271,530)(272,529);;
s1 := ( 1, 2)( 3, 17)( 4, 16)( 5, 15)( 6, 14)( 7, 13)( 8, 12)( 9, 11)
( 18, 19)( 20, 34)( 21, 33)( 22, 32)( 23, 31)( 24, 30)( 25, 29)( 26, 28)
( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)( 43, 45)
( 52, 53)( 54, 68)( 55, 67)( 56, 66)( 57, 65)( 58, 64)( 59, 63)( 60, 62)
( 69, 87)( 70, 86)( 71,102)( 72,101)( 73,100)( 74, 99)( 75, 98)( 76, 97)
( 77, 96)( 78, 95)( 79, 94)( 80, 93)( 81, 92)( 82, 91)( 83, 90)( 84, 89)
( 85, 88)(103,121)(104,120)(105,136)(106,135)(107,134)(108,133)(109,132)
(110,131)(111,130)(112,129)(113,128)(114,127)(115,126)(116,125)(117,124)
(118,123)(119,122)(137,172)(138,171)(139,187)(140,186)(141,185)(142,184)
(143,183)(144,182)(145,181)(146,180)(147,179)(148,178)(149,177)(150,176)
(151,175)(152,174)(153,173)(154,189)(155,188)(156,204)(157,203)(158,202)
(159,201)(160,200)(161,199)(162,198)(163,197)(164,196)(165,195)(166,194)
(167,193)(168,192)(169,191)(170,190)(205,257)(206,256)(207,272)(208,271)
(209,270)(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)(216,263)
(217,262)(218,261)(219,260)(220,259)(221,258)(222,240)(223,239)(224,255)
(225,254)(226,253)(227,252)(228,251)(229,250)(230,249)(231,248)(232,247)
(233,246)(234,245)(235,244)(236,243)(237,242)(238,241)(273,342)(274,341)
(275,357)(276,356)(277,355)(278,354)(279,353)(280,352)(281,351)(282,350)
(283,349)(284,348)(285,347)(286,346)(287,345)(288,344)(289,343)(290,359)
(291,358)(292,374)(293,373)(294,372)(295,371)(296,370)(297,369)(298,368)
(299,367)(300,366)(301,365)(302,364)(303,363)(304,362)(305,361)(306,360)
(307,376)(308,375)(309,391)(310,390)(311,389)(312,388)(313,387)(314,386)
(315,385)(316,384)(317,383)(318,382)(319,381)(320,380)(321,379)(322,378)
(323,377)(324,393)(325,392)(326,408)(327,407)(328,406)(329,405)(330,404)
(331,403)(332,402)(333,401)(334,400)(335,399)(336,398)(337,397)(338,396)
(339,395)(340,394)(409,529)(410,528)(411,544)(412,543)(413,542)(414,541)
(415,540)(416,539)(417,538)(418,537)(419,536)(420,535)(421,534)(422,533)
(423,532)(424,531)(425,530)(426,512)(427,511)(428,527)(429,526)(430,525)
(431,524)(432,523)(433,522)(434,521)(435,520)(436,519)(437,518)(438,517)
(439,516)(440,515)(441,514)(442,513)(443,495)(444,494)(445,510)(446,509)
(447,508)(448,507)(449,506)(450,505)(451,504)(452,503)(453,502)(454,501)
(455,500)(456,499)(457,498)(458,497)(459,496)(460,478)(461,477)(462,493)
(463,492)(464,491)(465,490)(466,489)(467,488)(468,487)(469,486)(470,485)
(471,484)(472,483)(473,482)(474,481)(475,480)(476,479);;
s2 := ( 1,137)( 2,138)( 3,139)( 4,140)( 5,141)( 6,142)( 7,143)( 8,144)
( 9,145)( 10,146)( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)( 16,152)
( 17,153)( 18,154)( 19,155)( 20,156)( 21,157)( 22,158)( 23,159)( 24,160)
( 25,161)( 26,162)( 27,163)( 28,164)( 29,165)( 30,166)( 31,167)( 32,168)
( 33,169)( 34,170)( 35,171)( 36,172)( 37,173)( 38,174)( 39,175)( 40,176)
( 41,177)( 42,178)( 43,179)( 44,180)( 45,181)( 46,182)( 47,183)( 48,184)
( 49,185)( 50,186)( 51,187)( 52,188)( 53,189)( 54,190)( 55,191)( 56,192)
( 57,193)( 58,194)( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)( 64,200)
( 65,201)( 66,202)( 67,203)( 68,204)( 69,222)( 70,223)( 71,224)( 72,225)
( 73,226)( 74,227)( 75,228)( 76,229)( 77,230)( 78,231)( 79,232)( 80,233)
( 81,234)( 82,235)( 83,236)( 84,237)( 85,238)( 86,205)( 87,206)( 88,207)
( 89,208)( 90,209)( 91,210)( 92,211)( 93,212)( 94,213)( 95,214)( 96,215)
( 97,216)( 98,217)( 99,218)(100,219)(101,220)(102,221)(103,256)(104,257)
(105,258)(106,259)(107,260)(108,261)(109,262)(110,263)(111,264)(112,265)
(113,266)(114,267)(115,268)(116,269)(117,270)(118,271)(119,272)(120,239)
(121,240)(122,241)(123,242)(124,243)(125,244)(126,245)(127,246)(128,247)
(129,248)(130,249)(131,250)(132,251)(133,252)(134,253)(135,254)(136,255)
(273,409)(274,410)(275,411)(276,412)(277,413)(278,414)(279,415)(280,416)
(281,417)(282,418)(283,419)(284,420)(285,421)(286,422)(287,423)(288,424)
(289,425)(290,426)(291,427)(292,428)(293,429)(294,430)(295,431)(296,432)
(297,433)(298,434)(299,435)(300,436)(301,437)(302,438)(303,439)(304,440)
(305,441)(306,442)(307,443)(308,444)(309,445)(310,446)(311,447)(312,448)
(313,449)(314,450)(315,451)(316,452)(317,453)(318,454)(319,455)(320,456)
(321,457)(322,458)(323,459)(324,460)(325,461)(326,462)(327,463)(328,464)
(329,465)(330,466)(331,467)(332,468)(333,469)(334,470)(335,471)(336,472)
(337,473)(338,474)(339,475)(340,476)(341,494)(342,495)(343,496)(344,497)
(345,498)(346,499)(347,500)(348,501)(349,502)(350,503)(351,504)(352,505)
(353,506)(354,507)(355,508)(356,509)(357,510)(358,477)(359,478)(360,479)
(361,480)(362,481)(363,482)(364,483)(365,484)(366,485)(367,486)(368,487)
(369,488)(370,489)(371,490)(372,491)(373,492)(374,493)(375,528)(376,529)
(377,530)(378,531)(379,532)(380,533)(381,534)(382,535)(383,536)(384,537)
(385,538)(386,539)(387,540)(388,541)(389,542)(390,543)(391,544)(392,511)
(393,512)(394,513)(395,514)(396,515)(397,516)(398,517)(399,518)(400,519)
(401,520)(402,521)(403,522)(404,523)(405,524)(406,525)(407,526)(408,527);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(544)!( 1,273)( 2,289)( 3,288)( 4,287)( 5,286)( 6,285)( 7,284)
( 8,283)( 9,282)( 10,281)( 11,280)( 12,279)( 13,278)( 14,277)( 15,276)
( 16,275)( 17,274)( 18,290)( 19,306)( 20,305)( 21,304)( 22,303)( 23,302)
( 24,301)( 25,300)( 26,299)( 27,298)( 28,297)( 29,296)( 30,295)( 31,294)
( 32,293)( 33,292)( 34,291)( 35,324)( 36,340)( 37,339)( 38,338)( 39,337)
( 40,336)( 41,335)( 42,334)( 43,333)( 44,332)( 45,331)( 46,330)( 47,329)
( 48,328)( 49,327)( 50,326)( 51,325)( 52,307)( 53,323)( 54,322)( 55,321)
( 56,320)( 57,319)( 58,318)( 59,317)( 60,316)( 61,315)( 62,314)( 63,313)
( 64,312)( 65,311)( 66,310)( 67,309)( 68,308)( 69,358)( 70,374)( 71,373)
( 72,372)( 73,371)( 74,370)( 75,369)( 76,368)( 77,367)( 78,366)( 79,365)
( 80,364)( 81,363)( 82,362)( 83,361)( 84,360)( 85,359)( 86,341)( 87,357)
( 88,356)( 89,355)( 90,354)( 91,353)( 92,352)( 93,351)( 94,350)( 95,349)
( 96,348)( 97,347)( 98,346)( 99,345)(100,344)(101,343)(102,342)(103,375)
(104,391)(105,390)(106,389)(107,388)(108,387)(109,386)(110,385)(111,384)
(112,383)(113,382)(114,381)(115,380)(116,379)(117,378)(118,377)(119,376)
(120,392)(121,408)(122,407)(123,406)(124,405)(125,404)(126,403)(127,402)
(128,401)(129,400)(130,399)(131,398)(132,397)(133,396)(134,395)(135,394)
(136,393)(137,409)(138,425)(139,424)(140,423)(141,422)(142,421)(143,420)
(144,419)(145,418)(146,417)(147,416)(148,415)(149,414)(150,413)(151,412)
(152,411)(153,410)(154,426)(155,442)(156,441)(157,440)(158,439)(159,438)
(160,437)(161,436)(162,435)(163,434)(164,433)(165,432)(166,431)(167,430)
(168,429)(169,428)(170,427)(171,460)(172,476)(173,475)(174,474)(175,473)
(176,472)(177,471)(178,470)(179,469)(180,468)(181,467)(182,466)(183,465)
(184,464)(185,463)(186,462)(187,461)(188,443)(189,459)(190,458)(191,457)
(192,456)(193,455)(194,454)(195,453)(196,452)(197,451)(198,450)(199,449)
(200,448)(201,447)(202,446)(203,445)(204,444)(205,494)(206,510)(207,509)
(208,508)(209,507)(210,506)(211,505)(212,504)(213,503)(214,502)(215,501)
(216,500)(217,499)(218,498)(219,497)(220,496)(221,495)(222,477)(223,493)
(224,492)(225,491)(226,490)(227,489)(228,488)(229,487)(230,486)(231,485)
(232,484)(233,483)(234,482)(235,481)(236,480)(237,479)(238,478)(239,511)
(240,527)(241,526)(242,525)(243,524)(244,523)(245,522)(246,521)(247,520)
(248,519)(249,518)(250,517)(251,516)(252,515)(253,514)(254,513)(255,512)
(256,528)(257,544)(258,543)(259,542)(260,541)(261,540)(262,539)(263,538)
(264,537)(265,536)(266,535)(267,534)(268,533)(269,532)(270,531)(271,530)
(272,529);
s1 := Sym(544)!( 1, 2)( 3, 17)( 4, 16)( 5, 15)( 6, 14)( 7, 13)( 8, 12)
( 9, 11)( 18, 19)( 20, 34)( 21, 33)( 22, 32)( 23, 31)( 24, 30)( 25, 29)
( 26, 28)( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)
( 43, 45)( 52, 53)( 54, 68)( 55, 67)( 56, 66)( 57, 65)( 58, 64)( 59, 63)
( 60, 62)( 69, 87)( 70, 86)( 71,102)( 72,101)( 73,100)( 74, 99)( 75, 98)
( 76, 97)( 77, 96)( 78, 95)( 79, 94)( 80, 93)( 81, 92)( 82, 91)( 83, 90)
( 84, 89)( 85, 88)(103,121)(104,120)(105,136)(106,135)(107,134)(108,133)
(109,132)(110,131)(111,130)(112,129)(113,128)(114,127)(115,126)(116,125)
(117,124)(118,123)(119,122)(137,172)(138,171)(139,187)(140,186)(141,185)
(142,184)(143,183)(144,182)(145,181)(146,180)(147,179)(148,178)(149,177)
(150,176)(151,175)(152,174)(153,173)(154,189)(155,188)(156,204)(157,203)
(158,202)(159,201)(160,200)(161,199)(162,198)(163,197)(164,196)(165,195)
(166,194)(167,193)(168,192)(169,191)(170,190)(205,257)(206,256)(207,272)
(208,271)(209,270)(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)
(216,263)(217,262)(218,261)(219,260)(220,259)(221,258)(222,240)(223,239)
(224,255)(225,254)(226,253)(227,252)(228,251)(229,250)(230,249)(231,248)
(232,247)(233,246)(234,245)(235,244)(236,243)(237,242)(238,241)(273,342)
(274,341)(275,357)(276,356)(277,355)(278,354)(279,353)(280,352)(281,351)
(282,350)(283,349)(284,348)(285,347)(286,346)(287,345)(288,344)(289,343)
(290,359)(291,358)(292,374)(293,373)(294,372)(295,371)(296,370)(297,369)
(298,368)(299,367)(300,366)(301,365)(302,364)(303,363)(304,362)(305,361)
(306,360)(307,376)(308,375)(309,391)(310,390)(311,389)(312,388)(313,387)
(314,386)(315,385)(316,384)(317,383)(318,382)(319,381)(320,380)(321,379)
(322,378)(323,377)(324,393)(325,392)(326,408)(327,407)(328,406)(329,405)
(330,404)(331,403)(332,402)(333,401)(334,400)(335,399)(336,398)(337,397)
(338,396)(339,395)(340,394)(409,529)(410,528)(411,544)(412,543)(413,542)
(414,541)(415,540)(416,539)(417,538)(418,537)(419,536)(420,535)(421,534)
(422,533)(423,532)(424,531)(425,530)(426,512)(427,511)(428,527)(429,526)
(430,525)(431,524)(432,523)(433,522)(434,521)(435,520)(436,519)(437,518)
(438,517)(439,516)(440,515)(441,514)(442,513)(443,495)(444,494)(445,510)
(446,509)(447,508)(448,507)(449,506)(450,505)(451,504)(452,503)(453,502)
(454,501)(455,500)(456,499)(457,498)(458,497)(459,496)(460,478)(461,477)
(462,493)(463,492)(464,491)(465,490)(466,489)(467,488)(468,487)(469,486)
(470,485)(471,484)(472,483)(473,482)(474,481)(475,480)(476,479);
s2 := Sym(544)!( 1,137)( 2,138)( 3,139)( 4,140)( 5,141)( 6,142)( 7,143)
( 8,144)( 9,145)( 10,146)( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)
( 16,152)( 17,153)( 18,154)( 19,155)( 20,156)( 21,157)( 22,158)( 23,159)
( 24,160)( 25,161)( 26,162)( 27,163)( 28,164)( 29,165)( 30,166)( 31,167)
( 32,168)( 33,169)( 34,170)( 35,171)( 36,172)( 37,173)( 38,174)( 39,175)
( 40,176)( 41,177)( 42,178)( 43,179)( 44,180)( 45,181)( 46,182)( 47,183)
( 48,184)( 49,185)( 50,186)( 51,187)( 52,188)( 53,189)( 54,190)( 55,191)
( 56,192)( 57,193)( 58,194)( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)
( 64,200)( 65,201)( 66,202)( 67,203)( 68,204)( 69,222)( 70,223)( 71,224)
( 72,225)( 73,226)( 74,227)( 75,228)( 76,229)( 77,230)( 78,231)( 79,232)
( 80,233)( 81,234)( 82,235)( 83,236)( 84,237)( 85,238)( 86,205)( 87,206)
( 88,207)( 89,208)( 90,209)( 91,210)( 92,211)( 93,212)( 94,213)( 95,214)
( 96,215)( 97,216)( 98,217)( 99,218)(100,219)(101,220)(102,221)(103,256)
(104,257)(105,258)(106,259)(107,260)(108,261)(109,262)(110,263)(111,264)
(112,265)(113,266)(114,267)(115,268)(116,269)(117,270)(118,271)(119,272)
(120,239)(121,240)(122,241)(123,242)(124,243)(125,244)(126,245)(127,246)
(128,247)(129,248)(130,249)(131,250)(132,251)(133,252)(134,253)(135,254)
(136,255)(273,409)(274,410)(275,411)(276,412)(277,413)(278,414)(279,415)
(280,416)(281,417)(282,418)(283,419)(284,420)(285,421)(286,422)(287,423)
(288,424)(289,425)(290,426)(291,427)(292,428)(293,429)(294,430)(295,431)
(296,432)(297,433)(298,434)(299,435)(300,436)(301,437)(302,438)(303,439)
(304,440)(305,441)(306,442)(307,443)(308,444)(309,445)(310,446)(311,447)
(312,448)(313,449)(314,450)(315,451)(316,452)(317,453)(318,454)(319,455)
(320,456)(321,457)(322,458)(323,459)(324,460)(325,461)(326,462)(327,463)
(328,464)(329,465)(330,466)(331,467)(332,468)(333,469)(334,470)(335,471)
(336,472)(337,473)(338,474)(339,475)(340,476)(341,494)(342,495)(343,496)
(344,497)(345,498)(346,499)(347,500)(348,501)(349,502)(350,503)(351,504)
(352,505)(353,506)(354,507)(355,508)(356,509)(357,510)(358,477)(359,478)
(360,479)(361,480)(362,481)(363,482)(364,483)(365,484)(366,485)(367,486)
(368,487)(369,488)(370,489)(371,490)(372,491)(373,492)(374,493)(375,528)
(376,529)(377,530)(378,531)(379,532)(380,533)(381,534)(382,535)(383,536)
(384,537)(385,538)(386,539)(387,540)(388,541)(389,542)(390,543)(391,544)
(392,511)(393,512)(394,513)(395,514)(396,515)(397,516)(398,517)(399,518)
(400,519)(401,520)(402,521)(403,522)(404,523)(405,524)(406,525)(407,526)
(408,527);
poly := sub<Sym(544)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope