Polytope of Type {550}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {550}*1100
Also Known As : 550-gon, {550}. if this polytope has another name.
Group : SmallGroup(1100,14)
Rank : 2
Schlafli Type : {550}
Number of vertices, edges, etc : 550, 550
Order of s0s1 : 550
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {275}*550
   5-fold quotients : {110}*220
   10-fold quotients : {55}*110
   11-fold quotients : {50}*100
   22-fold quotients : {25}*50
   25-fold quotients : {22}*44
   50-fold quotients : {11}*22
   55-fold quotients : {10}*20
   110-fold quotients : {5}*10
   275-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 51)(  7, 55)(  8, 54)(  9, 53)( 10, 52)( 11, 46)
( 12, 50)( 13, 49)( 14, 48)( 15, 47)( 16, 41)( 17, 45)( 18, 44)( 19, 43)
( 20, 42)( 21, 36)( 22, 40)( 23, 39)( 24, 38)( 25, 37)( 26, 31)( 27, 35)
( 28, 34)( 29, 33)( 30, 32)( 56,222)( 57,221)( 58,225)( 59,224)( 60,223)
( 61,272)( 62,271)( 63,275)( 64,274)( 65,273)( 66,267)( 67,266)( 68,270)
( 69,269)( 70,268)( 71,262)( 72,261)( 73,265)( 74,264)( 75,263)( 76,257)
( 77,256)( 78,260)( 79,259)( 80,258)( 81,252)( 82,251)( 83,255)( 84,254)
( 85,253)( 86,247)( 87,246)( 88,250)( 89,249)( 90,248)( 91,242)( 92,241)
( 93,245)( 94,244)( 95,243)( 96,237)( 97,236)( 98,240)( 99,239)(100,238)
(101,232)(102,231)(103,235)(104,234)(105,233)(106,227)(107,226)(108,230)
(109,229)(110,228)(111,167)(112,166)(113,170)(114,169)(115,168)(116,217)
(117,216)(118,220)(119,219)(120,218)(121,212)(122,211)(123,215)(124,214)
(125,213)(126,207)(127,206)(128,210)(129,209)(130,208)(131,202)(132,201)
(133,205)(134,204)(135,203)(136,197)(137,196)(138,200)(139,199)(140,198)
(141,192)(142,191)(143,195)(144,194)(145,193)(146,187)(147,186)(148,190)
(149,189)(150,188)(151,182)(152,181)(153,185)(154,184)(155,183)(156,177)
(157,176)(158,180)(159,179)(160,178)(161,172)(162,171)(163,175)(164,174)
(165,173)(277,280)(278,279)(281,326)(282,330)(283,329)(284,328)(285,327)
(286,321)(287,325)(288,324)(289,323)(290,322)(291,316)(292,320)(293,319)
(294,318)(295,317)(296,311)(297,315)(298,314)(299,313)(300,312)(301,306)
(302,310)(303,309)(304,308)(305,307)(331,497)(332,496)(333,500)(334,499)
(335,498)(336,547)(337,546)(338,550)(339,549)(340,548)(341,542)(342,541)
(343,545)(344,544)(345,543)(346,537)(347,536)(348,540)(349,539)(350,538)
(351,532)(352,531)(353,535)(354,534)(355,533)(356,527)(357,526)(358,530)
(359,529)(360,528)(361,522)(362,521)(363,525)(364,524)(365,523)(366,517)
(367,516)(368,520)(369,519)(370,518)(371,512)(372,511)(373,515)(374,514)
(375,513)(376,507)(377,506)(378,510)(379,509)(380,508)(381,502)(382,501)
(383,505)(384,504)(385,503)(386,442)(387,441)(388,445)(389,444)(390,443)
(391,492)(392,491)(393,495)(394,494)(395,493)(396,487)(397,486)(398,490)
(399,489)(400,488)(401,482)(402,481)(403,485)(404,484)(405,483)(406,477)
(407,476)(408,480)(409,479)(410,478)(411,472)(412,471)(413,475)(414,474)
(415,473)(416,467)(417,466)(418,470)(419,469)(420,468)(421,462)(422,461)
(423,465)(424,464)(425,463)(426,457)(427,456)(428,460)(429,459)(430,458)
(431,452)(432,451)(433,455)(434,454)(435,453)(436,447)(437,446)(438,450)
(439,449)(440,448);;
s1 := (  1,336)(  2,340)(  3,339)(  4,338)(  5,337)(  6,331)(  7,335)(  8,334)
(  9,333)( 10,332)( 11,381)( 12,385)( 13,384)( 14,383)( 15,382)( 16,376)
( 17,380)( 18,379)( 19,378)( 20,377)( 21,371)( 22,375)( 23,374)( 24,373)
( 25,372)( 26,366)( 27,370)( 28,369)( 29,368)( 30,367)( 31,361)( 32,365)
( 33,364)( 34,363)( 35,362)( 36,356)( 37,360)( 38,359)( 39,358)( 40,357)
( 41,351)( 42,355)( 43,354)( 44,353)( 45,352)( 46,346)( 47,350)( 48,349)
( 49,348)( 50,347)( 51,341)( 52,345)( 53,344)( 54,343)( 55,342)( 56,281)
( 57,285)( 58,284)( 59,283)( 60,282)( 61,276)( 62,280)( 63,279)( 64,278)
( 65,277)( 66,326)( 67,330)( 68,329)( 69,328)( 70,327)( 71,321)( 72,325)
( 73,324)( 74,323)( 75,322)( 76,316)( 77,320)( 78,319)( 79,318)( 80,317)
( 81,311)( 82,315)( 83,314)( 84,313)( 85,312)( 86,306)( 87,310)( 88,309)
( 89,308)( 90,307)( 91,301)( 92,305)( 93,304)( 94,303)( 95,302)( 96,296)
( 97,300)( 98,299)( 99,298)(100,297)(101,291)(102,295)(103,294)(104,293)
(105,292)(106,286)(107,290)(108,289)(109,288)(110,287)(111,502)(112,501)
(113,505)(114,504)(115,503)(116,497)(117,496)(118,500)(119,499)(120,498)
(121,547)(122,546)(123,550)(124,549)(125,548)(126,542)(127,541)(128,545)
(129,544)(130,543)(131,537)(132,536)(133,540)(134,539)(135,538)(136,532)
(137,531)(138,535)(139,534)(140,533)(141,527)(142,526)(143,530)(144,529)
(145,528)(146,522)(147,521)(148,525)(149,524)(150,523)(151,517)(152,516)
(153,520)(154,519)(155,518)(156,512)(157,511)(158,515)(159,514)(160,513)
(161,507)(162,506)(163,510)(164,509)(165,508)(166,447)(167,446)(168,450)
(169,449)(170,448)(171,442)(172,441)(173,445)(174,444)(175,443)(176,492)
(177,491)(178,495)(179,494)(180,493)(181,487)(182,486)(183,490)(184,489)
(185,488)(186,482)(187,481)(188,485)(189,484)(190,483)(191,477)(192,476)
(193,480)(194,479)(195,478)(196,472)(197,471)(198,475)(199,474)(200,473)
(201,467)(202,466)(203,470)(204,469)(205,468)(206,462)(207,461)(208,465)
(209,464)(210,463)(211,457)(212,456)(213,460)(214,459)(215,458)(216,452)
(217,451)(218,455)(219,454)(220,453)(221,392)(222,391)(223,395)(224,394)
(225,393)(226,387)(227,386)(228,390)(229,389)(230,388)(231,437)(232,436)
(233,440)(234,439)(235,438)(236,432)(237,431)(238,435)(239,434)(240,433)
(241,427)(242,426)(243,430)(244,429)(245,428)(246,422)(247,421)(248,425)
(249,424)(250,423)(251,417)(252,416)(253,420)(254,419)(255,418)(256,412)
(257,411)(258,415)(259,414)(260,413)(261,407)(262,406)(263,410)(264,409)
(265,408)(266,402)(267,401)(268,405)(269,404)(270,403)(271,397)(272,396)
(273,400)(274,399)(275,398);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(550)!(  2,  5)(  3,  4)(  6, 51)(  7, 55)(  8, 54)(  9, 53)( 10, 52)
( 11, 46)( 12, 50)( 13, 49)( 14, 48)( 15, 47)( 16, 41)( 17, 45)( 18, 44)
( 19, 43)( 20, 42)( 21, 36)( 22, 40)( 23, 39)( 24, 38)( 25, 37)( 26, 31)
( 27, 35)( 28, 34)( 29, 33)( 30, 32)( 56,222)( 57,221)( 58,225)( 59,224)
( 60,223)( 61,272)( 62,271)( 63,275)( 64,274)( 65,273)( 66,267)( 67,266)
( 68,270)( 69,269)( 70,268)( 71,262)( 72,261)( 73,265)( 74,264)( 75,263)
( 76,257)( 77,256)( 78,260)( 79,259)( 80,258)( 81,252)( 82,251)( 83,255)
( 84,254)( 85,253)( 86,247)( 87,246)( 88,250)( 89,249)( 90,248)( 91,242)
( 92,241)( 93,245)( 94,244)( 95,243)( 96,237)( 97,236)( 98,240)( 99,239)
(100,238)(101,232)(102,231)(103,235)(104,234)(105,233)(106,227)(107,226)
(108,230)(109,229)(110,228)(111,167)(112,166)(113,170)(114,169)(115,168)
(116,217)(117,216)(118,220)(119,219)(120,218)(121,212)(122,211)(123,215)
(124,214)(125,213)(126,207)(127,206)(128,210)(129,209)(130,208)(131,202)
(132,201)(133,205)(134,204)(135,203)(136,197)(137,196)(138,200)(139,199)
(140,198)(141,192)(142,191)(143,195)(144,194)(145,193)(146,187)(147,186)
(148,190)(149,189)(150,188)(151,182)(152,181)(153,185)(154,184)(155,183)
(156,177)(157,176)(158,180)(159,179)(160,178)(161,172)(162,171)(163,175)
(164,174)(165,173)(277,280)(278,279)(281,326)(282,330)(283,329)(284,328)
(285,327)(286,321)(287,325)(288,324)(289,323)(290,322)(291,316)(292,320)
(293,319)(294,318)(295,317)(296,311)(297,315)(298,314)(299,313)(300,312)
(301,306)(302,310)(303,309)(304,308)(305,307)(331,497)(332,496)(333,500)
(334,499)(335,498)(336,547)(337,546)(338,550)(339,549)(340,548)(341,542)
(342,541)(343,545)(344,544)(345,543)(346,537)(347,536)(348,540)(349,539)
(350,538)(351,532)(352,531)(353,535)(354,534)(355,533)(356,527)(357,526)
(358,530)(359,529)(360,528)(361,522)(362,521)(363,525)(364,524)(365,523)
(366,517)(367,516)(368,520)(369,519)(370,518)(371,512)(372,511)(373,515)
(374,514)(375,513)(376,507)(377,506)(378,510)(379,509)(380,508)(381,502)
(382,501)(383,505)(384,504)(385,503)(386,442)(387,441)(388,445)(389,444)
(390,443)(391,492)(392,491)(393,495)(394,494)(395,493)(396,487)(397,486)
(398,490)(399,489)(400,488)(401,482)(402,481)(403,485)(404,484)(405,483)
(406,477)(407,476)(408,480)(409,479)(410,478)(411,472)(412,471)(413,475)
(414,474)(415,473)(416,467)(417,466)(418,470)(419,469)(420,468)(421,462)
(422,461)(423,465)(424,464)(425,463)(426,457)(427,456)(428,460)(429,459)
(430,458)(431,452)(432,451)(433,455)(434,454)(435,453)(436,447)(437,446)
(438,450)(439,449)(440,448);
s1 := Sym(550)!(  1,336)(  2,340)(  3,339)(  4,338)(  5,337)(  6,331)(  7,335)
(  8,334)(  9,333)( 10,332)( 11,381)( 12,385)( 13,384)( 14,383)( 15,382)
( 16,376)( 17,380)( 18,379)( 19,378)( 20,377)( 21,371)( 22,375)( 23,374)
( 24,373)( 25,372)( 26,366)( 27,370)( 28,369)( 29,368)( 30,367)( 31,361)
( 32,365)( 33,364)( 34,363)( 35,362)( 36,356)( 37,360)( 38,359)( 39,358)
( 40,357)( 41,351)( 42,355)( 43,354)( 44,353)( 45,352)( 46,346)( 47,350)
( 48,349)( 49,348)( 50,347)( 51,341)( 52,345)( 53,344)( 54,343)( 55,342)
( 56,281)( 57,285)( 58,284)( 59,283)( 60,282)( 61,276)( 62,280)( 63,279)
( 64,278)( 65,277)( 66,326)( 67,330)( 68,329)( 69,328)( 70,327)( 71,321)
( 72,325)( 73,324)( 74,323)( 75,322)( 76,316)( 77,320)( 78,319)( 79,318)
( 80,317)( 81,311)( 82,315)( 83,314)( 84,313)( 85,312)( 86,306)( 87,310)
( 88,309)( 89,308)( 90,307)( 91,301)( 92,305)( 93,304)( 94,303)( 95,302)
( 96,296)( 97,300)( 98,299)( 99,298)(100,297)(101,291)(102,295)(103,294)
(104,293)(105,292)(106,286)(107,290)(108,289)(109,288)(110,287)(111,502)
(112,501)(113,505)(114,504)(115,503)(116,497)(117,496)(118,500)(119,499)
(120,498)(121,547)(122,546)(123,550)(124,549)(125,548)(126,542)(127,541)
(128,545)(129,544)(130,543)(131,537)(132,536)(133,540)(134,539)(135,538)
(136,532)(137,531)(138,535)(139,534)(140,533)(141,527)(142,526)(143,530)
(144,529)(145,528)(146,522)(147,521)(148,525)(149,524)(150,523)(151,517)
(152,516)(153,520)(154,519)(155,518)(156,512)(157,511)(158,515)(159,514)
(160,513)(161,507)(162,506)(163,510)(164,509)(165,508)(166,447)(167,446)
(168,450)(169,449)(170,448)(171,442)(172,441)(173,445)(174,444)(175,443)
(176,492)(177,491)(178,495)(179,494)(180,493)(181,487)(182,486)(183,490)
(184,489)(185,488)(186,482)(187,481)(188,485)(189,484)(190,483)(191,477)
(192,476)(193,480)(194,479)(195,478)(196,472)(197,471)(198,475)(199,474)
(200,473)(201,467)(202,466)(203,470)(204,469)(205,468)(206,462)(207,461)
(208,465)(209,464)(210,463)(211,457)(212,456)(213,460)(214,459)(215,458)
(216,452)(217,451)(218,455)(219,454)(220,453)(221,392)(222,391)(223,395)
(224,394)(225,393)(226,387)(227,386)(228,390)(229,389)(230,388)(231,437)
(232,436)(233,440)(234,439)(235,438)(236,432)(237,431)(238,435)(239,434)
(240,433)(241,427)(242,426)(243,430)(244,429)(245,428)(246,422)(247,421)
(248,425)(249,424)(250,423)(251,417)(252,416)(253,420)(254,419)(255,418)
(256,412)(257,411)(258,415)(259,414)(260,413)(261,407)(262,406)(263,410)
(264,409)(265,408)(266,402)(267,401)(268,405)(269,404)(270,403)(271,397)
(272,396)(273,400)(274,399)(275,398);
poly := sub<Sym(550)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope