include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {552}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {552}*1104
Also Known As : 552-gon, {552}. if this polytope has another name.
Group : SmallGroup(1104,66)
Rank : 2
Schlafli Type : {552}
Number of vertices, edges, etc : 552, 552
Order of s0s1 : 552
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {276}*552
3-fold quotients : {184}*368
4-fold quotients : {138}*276
6-fold quotients : {92}*184
8-fold quotients : {69}*138
12-fold quotients : {46}*92
23-fold quotients : {24}*48
24-fold quotients : {23}*46
46-fold quotients : {12}*24
69-fold quotients : {8}*16
92-fold quotients : {6}*12
138-fold quotients : {4}*8
184-fold quotients : {3}*6
276-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)( 9, 16)
( 10, 15)( 11, 14)( 12, 13)( 24, 47)( 25, 69)( 26, 68)( 27, 67)( 28, 66)
( 29, 65)( 30, 64)( 31, 63)( 32, 62)( 33, 61)( 34, 60)( 35, 59)( 36, 58)
( 37, 57)( 38, 56)( 39, 55)( 40, 54)( 41, 53)( 42, 52)( 43, 51)( 44, 50)
( 45, 49)( 46, 48)( 71, 92)( 72, 91)( 73, 90)( 74, 89)( 75, 88)( 76, 87)
( 77, 86)( 78, 85)( 79, 84)( 80, 83)( 81, 82)( 93,116)( 94,138)( 95,137)
( 96,136)( 97,135)( 98,134)( 99,133)(100,132)(101,131)(102,130)(103,129)
(104,128)(105,127)(106,126)(107,125)(108,124)(109,123)(110,122)(111,121)
(112,120)(113,119)(114,118)(115,117)(139,208)(140,230)(141,229)(142,228)
(143,227)(144,226)(145,225)(146,224)(147,223)(148,222)(149,221)(150,220)
(151,219)(152,218)(153,217)(154,216)(155,215)(156,214)(157,213)(158,212)
(159,211)(160,210)(161,209)(162,254)(163,276)(164,275)(165,274)(166,273)
(167,272)(168,271)(169,270)(170,269)(171,268)(172,267)(173,266)(174,265)
(175,264)(176,263)(177,262)(178,261)(179,260)(180,259)(181,258)(182,257)
(183,256)(184,255)(185,231)(186,253)(187,252)(188,251)(189,250)(190,249)
(191,248)(192,247)(193,246)(194,245)(195,244)(196,243)(197,242)(198,241)
(199,240)(200,239)(201,238)(202,237)(203,236)(204,235)(205,234)(206,233)
(207,232)(277,415)(278,437)(279,436)(280,435)(281,434)(282,433)(283,432)
(284,431)(285,430)(286,429)(287,428)(288,427)(289,426)(290,425)(291,424)
(292,423)(293,422)(294,421)(295,420)(296,419)(297,418)(298,417)(299,416)
(300,461)(301,483)(302,482)(303,481)(304,480)(305,479)(306,478)(307,477)
(308,476)(309,475)(310,474)(311,473)(312,472)(313,471)(314,470)(315,469)
(316,468)(317,467)(318,466)(319,465)(320,464)(321,463)(322,462)(323,438)
(324,460)(325,459)(326,458)(327,457)(328,456)(329,455)(330,454)(331,453)
(332,452)(333,451)(334,450)(335,449)(336,448)(337,447)(338,446)(339,445)
(340,444)(341,443)(342,442)(343,441)(344,440)(345,439)(346,484)(347,506)
(348,505)(349,504)(350,503)(351,502)(352,501)(353,500)(354,499)(355,498)
(356,497)(357,496)(358,495)(359,494)(360,493)(361,492)(362,491)(363,490)
(364,489)(365,488)(366,487)(367,486)(368,485)(369,530)(370,552)(371,551)
(372,550)(373,549)(374,548)(375,547)(376,546)(377,545)(378,544)(379,543)
(380,542)(381,541)(382,540)(383,539)(384,538)(385,537)(386,536)(387,535)
(388,534)(389,533)(390,532)(391,531)(392,507)(393,529)(394,528)(395,527)
(396,526)(397,525)(398,524)(399,523)(400,522)(401,521)(402,520)(403,519)
(404,518)(405,517)(406,516)(407,515)(408,514)(409,513)(410,512)(411,511)
(412,510)(413,509)(414,508);;
s1 := ( 1,301)( 2,300)( 3,322)( 4,321)( 5,320)( 6,319)( 7,318)( 8,317)
( 9,316)( 10,315)( 11,314)( 12,313)( 13,312)( 14,311)( 15,310)( 16,309)
( 17,308)( 18,307)( 19,306)( 20,305)( 21,304)( 22,303)( 23,302)( 24,278)
( 25,277)( 26,299)( 27,298)( 28,297)( 29,296)( 30,295)( 31,294)( 32,293)
( 33,292)( 34,291)( 35,290)( 36,289)( 37,288)( 38,287)( 39,286)( 40,285)
( 41,284)( 42,283)( 43,282)( 44,281)( 45,280)( 46,279)( 47,324)( 48,323)
( 49,345)( 50,344)( 51,343)( 52,342)( 53,341)( 54,340)( 55,339)( 56,338)
( 57,337)( 58,336)( 59,335)( 60,334)( 61,333)( 62,332)( 63,331)( 64,330)
( 65,329)( 66,328)( 67,327)( 68,326)( 69,325)( 70,370)( 71,369)( 72,391)
( 73,390)( 74,389)( 75,388)( 76,387)( 77,386)( 78,385)( 79,384)( 80,383)
( 81,382)( 82,381)( 83,380)( 84,379)( 85,378)( 86,377)( 87,376)( 88,375)
( 89,374)( 90,373)( 91,372)( 92,371)( 93,347)( 94,346)( 95,368)( 96,367)
( 97,366)( 98,365)( 99,364)(100,363)(101,362)(102,361)(103,360)(104,359)
(105,358)(106,357)(107,356)(108,355)(109,354)(110,353)(111,352)(112,351)
(113,350)(114,349)(115,348)(116,393)(117,392)(118,414)(119,413)(120,412)
(121,411)(122,410)(123,409)(124,408)(125,407)(126,406)(127,405)(128,404)
(129,403)(130,402)(131,401)(132,400)(133,399)(134,398)(135,397)(136,396)
(137,395)(138,394)(139,508)(140,507)(141,529)(142,528)(143,527)(144,526)
(145,525)(146,524)(147,523)(148,522)(149,521)(150,520)(151,519)(152,518)
(153,517)(154,516)(155,515)(156,514)(157,513)(158,512)(159,511)(160,510)
(161,509)(162,485)(163,484)(164,506)(165,505)(166,504)(167,503)(168,502)
(169,501)(170,500)(171,499)(172,498)(173,497)(174,496)(175,495)(176,494)
(177,493)(178,492)(179,491)(180,490)(181,489)(182,488)(183,487)(184,486)
(185,531)(186,530)(187,552)(188,551)(189,550)(190,549)(191,548)(192,547)
(193,546)(194,545)(195,544)(196,543)(197,542)(198,541)(199,540)(200,539)
(201,538)(202,537)(203,536)(204,535)(205,534)(206,533)(207,532)(208,439)
(209,438)(210,460)(211,459)(212,458)(213,457)(214,456)(215,455)(216,454)
(217,453)(218,452)(219,451)(220,450)(221,449)(222,448)(223,447)(224,446)
(225,445)(226,444)(227,443)(228,442)(229,441)(230,440)(231,416)(232,415)
(233,437)(234,436)(235,435)(236,434)(237,433)(238,432)(239,431)(240,430)
(241,429)(242,428)(243,427)(244,426)(245,425)(246,424)(247,423)(248,422)
(249,421)(250,420)(251,419)(252,418)(253,417)(254,462)(255,461)(256,483)
(257,482)(258,481)(259,480)(260,479)(261,478)(262,477)(263,476)(264,475)
(265,474)(266,473)(267,472)(268,471)(269,470)(270,469)(271,468)(272,467)
(273,466)(274,465)(275,464)(276,463);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(552)!( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)
( 9, 16)( 10, 15)( 11, 14)( 12, 13)( 24, 47)( 25, 69)( 26, 68)( 27, 67)
( 28, 66)( 29, 65)( 30, 64)( 31, 63)( 32, 62)( 33, 61)( 34, 60)( 35, 59)
( 36, 58)( 37, 57)( 38, 56)( 39, 55)( 40, 54)( 41, 53)( 42, 52)( 43, 51)
( 44, 50)( 45, 49)( 46, 48)( 71, 92)( 72, 91)( 73, 90)( 74, 89)( 75, 88)
( 76, 87)( 77, 86)( 78, 85)( 79, 84)( 80, 83)( 81, 82)( 93,116)( 94,138)
( 95,137)( 96,136)( 97,135)( 98,134)( 99,133)(100,132)(101,131)(102,130)
(103,129)(104,128)(105,127)(106,126)(107,125)(108,124)(109,123)(110,122)
(111,121)(112,120)(113,119)(114,118)(115,117)(139,208)(140,230)(141,229)
(142,228)(143,227)(144,226)(145,225)(146,224)(147,223)(148,222)(149,221)
(150,220)(151,219)(152,218)(153,217)(154,216)(155,215)(156,214)(157,213)
(158,212)(159,211)(160,210)(161,209)(162,254)(163,276)(164,275)(165,274)
(166,273)(167,272)(168,271)(169,270)(170,269)(171,268)(172,267)(173,266)
(174,265)(175,264)(176,263)(177,262)(178,261)(179,260)(180,259)(181,258)
(182,257)(183,256)(184,255)(185,231)(186,253)(187,252)(188,251)(189,250)
(190,249)(191,248)(192,247)(193,246)(194,245)(195,244)(196,243)(197,242)
(198,241)(199,240)(200,239)(201,238)(202,237)(203,236)(204,235)(205,234)
(206,233)(207,232)(277,415)(278,437)(279,436)(280,435)(281,434)(282,433)
(283,432)(284,431)(285,430)(286,429)(287,428)(288,427)(289,426)(290,425)
(291,424)(292,423)(293,422)(294,421)(295,420)(296,419)(297,418)(298,417)
(299,416)(300,461)(301,483)(302,482)(303,481)(304,480)(305,479)(306,478)
(307,477)(308,476)(309,475)(310,474)(311,473)(312,472)(313,471)(314,470)
(315,469)(316,468)(317,467)(318,466)(319,465)(320,464)(321,463)(322,462)
(323,438)(324,460)(325,459)(326,458)(327,457)(328,456)(329,455)(330,454)
(331,453)(332,452)(333,451)(334,450)(335,449)(336,448)(337,447)(338,446)
(339,445)(340,444)(341,443)(342,442)(343,441)(344,440)(345,439)(346,484)
(347,506)(348,505)(349,504)(350,503)(351,502)(352,501)(353,500)(354,499)
(355,498)(356,497)(357,496)(358,495)(359,494)(360,493)(361,492)(362,491)
(363,490)(364,489)(365,488)(366,487)(367,486)(368,485)(369,530)(370,552)
(371,551)(372,550)(373,549)(374,548)(375,547)(376,546)(377,545)(378,544)
(379,543)(380,542)(381,541)(382,540)(383,539)(384,538)(385,537)(386,536)
(387,535)(388,534)(389,533)(390,532)(391,531)(392,507)(393,529)(394,528)
(395,527)(396,526)(397,525)(398,524)(399,523)(400,522)(401,521)(402,520)
(403,519)(404,518)(405,517)(406,516)(407,515)(408,514)(409,513)(410,512)
(411,511)(412,510)(413,509)(414,508);
s1 := Sym(552)!( 1,301)( 2,300)( 3,322)( 4,321)( 5,320)( 6,319)( 7,318)
( 8,317)( 9,316)( 10,315)( 11,314)( 12,313)( 13,312)( 14,311)( 15,310)
( 16,309)( 17,308)( 18,307)( 19,306)( 20,305)( 21,304)( 22,303)( 23,302)
( 24,278)( 25,277)( 26,299)( 27,298)( 28,297)( 29,296)( 30,295)( 31,294)
( 32,293)( 33,292)( 34,291)( 35,290)( 36,289)( 37,288)( 38,287)( 39,286)
( 40,285)( 41,284)( 42,283)( 43,282)( 44,281)( 45,280)( 46,279)( 47,324)
( 48,323)( 49,345)( 50,344)( 51,343)( 52,342)( 53,341)( 54,340)( 55,339)
( 56,338)( 57,337)( 58,336)( 59,335)( 60,334)( 61,333)( 62,332)( 63,331)
( 64,330)( 65,329)( 66,328)( 67,327)( 68,326)( 69,325)( 70,370)( 71,369)
( 72,391)( 73,390)( 74,389)( 75,388)( 76,387)( 77,386)( 78,385)( 79,384)
( 80,383)( 81,382)( 82,381)( 83,380)( 84,379)( 85,378)( 86,377)( 87,376)
( 88,375)( 89,374)( 90,373)( 91,372)( 92,371)( 93,347)( 94,346)( 95,368)
( 96,367)( 97,366)( 98,365)( 99,364)(100,363)(101,362)(102,361)(103,360)
(104,359)(105,358)(106,357)(107,356)(108,355)(109,354)(110,353)(111,352)
(112,351)(113,350)(114,349)(115,348)(116,393)(117,392)(118,414)(119,413)
(120,412)(121,411)(122,410)(123,409)(124,408)(125,407)(126,406)(127,405)
(128,404)(129,403)(130,402)(131,401)(132,400)(133,399)(134,398)(135,397)
(136,396)(137,395)(138,394)(139,508)(140,507)(141,529)(142,528)(143,527)
(144,526)(145,525)(146,524)(147,523)(148,522)(149,521)(150,520)(151,519)
(152,518)(153,517)(154,516)(155,515)(156,514)(157,513)(158,512)(159,511)
(160,510)(161,509)(162,485)(163,484)(164,506)(165,505)(166,504)(167,503)
(168,502)(169,501)(170,500)(171,499)(172,498)(173,497)(174,496)(175,495)
(176,494)(177,493)(178,492)(179,491)(180,490)(181,489)(182,488)(183,487)
(184,486)(185,531)(186,530)(187,552)(188,551)(189,550)(190,549)(191,548)
(192,547)(193,546)(194,545)(195,544)(196,543)(197,542)(198,541)(199,540)
(200,539)(201,538)(202,537)(203,536)(204,535)(205,534)(206,533)(207,532)
(208,439)(209,438)(210,460)(211,459)(212,458)(213,457)(214,456)(215,455)
(216,454)(217,453)(218,452)(219,451)(220,450)(221,449)(222,448)(223,447)
(224,446)(225,445)(226,444)(227,443)(228,442)(229,441)(230,440)(231,416)
(232,415)(233,437)(234,436)(235,435)(236,434)(237,433)(238,432)(239,431)
(240,430)(241,429)(242,428)(243,427)(244,426)(245,425)(246,424)(247,423)
(248,422)(249,421)(250,420)(251,419)(252,418)(253,417)(254,462)(255,461)
(256,483)(257,482)(258,481)(259,480)(260,479)(261,478)(262,477)(263,476)
(264,475)(265,474)(266,473)(267,472)(268,471)(269,470)(270,469)(271,468)
(272,467)(273,466)(274,465)(275,464)(276,463);
poly := sub<Sym(552)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope