Polytope of Type {554}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {554}*1108
Also Known As : 554-gon, {554}. if this polytope has another name.
Group : SmallGroup(1108,4)
Rank : 2
Schlafli Type : {554}
Number of vertices, edges, etc : 554, 554
Order of s0s1 : 554
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {277}*554
   277-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,277)(  3,276)(  4,275)(  5,274)(  6,273)(  7,272)(  8,271)(  9,270)
( 10,269)( 11,268)( 12,267)( 13,266)( 14,265)( 15,264)( 16,263)( 17,262)
( 18,261)( 19,260)( 20,259)( 21,258)( 22,257)( 23,256)( 24,255)( 25,254)
( 26,253)( 27,252)( 28,251)( 29,250)( 30,249)( 31,248)( 32,247)( 33,246)
( 34,245)( 35,244)( 36,243)( 37,242)( 38,241)( 39,240)( 40,239)( 41,238)
( 42,237)( 43,236)( 44,235)( 45,234)( 46,233)( 47,232)( 48,231)( 49,230)
( 50,229)( 51,228)( 52,227)( 53,226)( 54,225)( 55,224)( 56,223)( 57,222)
( 58,221)( 59,220)( 60,219)( 61,218)( 62,217)( 63,216)( 64,215)( 65,214)
( 66,213)( 67,212)( 68,211)( 69,210)( 70,209)( 71,208)( 72,207)( 73,206)
( 74,205)( 75,204)( 76,203)( 77,202)( 78,201)( 79,200)( 80,199)( 81,198)
( 82,197)( 83,196)( 84,195)( 85,194)( 86,193)( 87,192)( 88,191)( 89,190)
( 90,189)( 91,188)( 92,187)( 93,186)( 94,185)( 95,184)( 96,183)( 97,182)
( 98,181)( 99,180)(100,179)(101,178)(102,177)(103,176)(104,175)(105,174)
(106,173)(107,172)(108,171)(109,170)(110,169)(111,168)(112,167)(113,166)
(114,165)(115,164)(116,163)(117,162)(118,161)(119,160)(120,159)(121,158)
(122,157)(123,156)(124,155)(125,154)(126,153)(127,152)(128,151)(129,150)
(130,149)(131,148)(132,147)(133,146)(134,145)(135,144)(136,143)(137,142)
(138,141)(139,140)(279,554)(280,553)(281,552)(282,551)(283,550)(284,549)
(285,548)(286,547)(287,546)(288,545)(289,544)(290,543)(291,542)(292,541)
(293,540)(294,539)(295,538)(296,537)(297,536)(298,535)(299,534)(300,533)
(301,532)(302,531)(303,530)(304,529)(305,528)(306,527)(307,526)(308,525)
(309,524)(310,523)(311,522)(312,521)(313,520)(314,519)(315,518)(316,517)
(317,516)(318,515)(319,514)(320,513)(321,512)(322,511)(323,510)(324,509)
(325,508)(326,507)(327,506)(328,505)(329,504)(330,503)(331,502)(332,501)
(333,500)(334,499)(335,498)(336,497)(337,496)(338,495)(339,494)(340,493)
(341,492)(342,491)(343,490)(344,489)(345,488)(346,487)(347,486)(348,485)
(349,484)(350,483)(351,482)(352,481)(353,480)(354,479)(355,478)(356,477)
(357,476)(358,475)(359,474)(360,473)(361,472)(362,471)(363,470)(364,469)
(365,468)(366,467)(367,466)(368,465)(369,464)(370,463)(371,462)(372,461)
(373,460)(374,459)(375,458)(376,457)(377,456)(378,455)(379,454)(380,453)
(381,452)(382,451)(383,450)(384,449)(385,448)(386,447)(387,446)(388,445)
(389,444)(390,443)(391,442)(392,441)(393,440)(394,439)(395,438)(396,437)
(397,436)(398,435)(399,434)(400,433)(401,432)(402,431)(403,430)(404,429)
(405,428)(406,427)(407,426)(408,425)(409,424)(410,423)(411,422)(412,421)
(413,420)(414,419)(415,418)(416,417);;
s1 := (  1,279)(  2,278)(  3,554)(  4,553)(  5,552)(  6,551)(  7,550)(  8,549)
(  9,548)( 10,547)( 11,546)( 12,545)( 13,544)( 14,543)( 15,542)( 16,541)
( 17,540)( 18,539)( 19,538)( 20,537)( 21,536)( 22,535)( 23,534)( 24,533)
( 25,532)( 26,531)( 27,530)( 28,529)( 29,528)( 30,527)( 31,526)( 32,525)
( 33,524)( 34,523)( 35,522)( 36,521)( 37,520)( 38,519)( 39,518)( 40,517)
( 41,516)( 42,515)( 43,514)( 44,513)( 45,512)( 46,511)( 47,510)( 48,509)
( 49,508)( 50,507)( 51,506)( 52,505)( 53,504)( 54,503)( 55,502)( 56,501)
( 57,500)( 58,499)( 59,498)( 60,497)( 61,496)( 62,495)( 63,494)( 64,493)
( 65,492)( 66,491)( 67,490)( 68,489)( 69,488)( 70,487)( 71,486)( 72,485)
( 73,484)( 74,483)( 75,482)( 76,481)( 77,480)( 78,479)( 79,478)( 80,477)
( 81,476)( 82,475)( 83,474)( 84,473)( 85,472)( 86,471)( 87,470)( 88,469)
( 89,468)( 90,467)( 91,466)( 92,465)( 93,464)( 94,463)( 95,462)( 96,461)
( 97,460)( 98,459)( 99,458)(100,457)(101,456)(102,455)(103,454)(104,453)
(105,452)(106,451)(107,450)(108,449)(109,448)(110,447)(111,446)(112,445)
(113,444)(114,443)(115,442)(116,441)(117,440)(118,439)(119,438)(120,437)
(121,436)(122,435)(123,434)(124,433)(125,432)(126,431)(127,430)(128,429)
(129,428)(130,427)(131,426)(132,425)(133,424)(134,423)(135,422)(136,421)
(137,420)(138,419)(139,418)(140,417)(141,416)(142,415)(143,414)(144,413)
(145,412)(146,411)(147,410)(148,409)(149,408)(150,407)(151,406)(152,405)
(153,404)(154,403)(155,402)(156,401)(157,400)(158,399)(159,398)(160,397)
(161,396)(162,395)(163,394)(164,393)(165,392)(166,391)(167,390)(168,389)
(169,388)(170,387)(171,386)(172,385)(173,384)(174,383)(175,382)(176,381)
(177,380)(178,379)(179,378)(180,377)(181,376)(182,375)(183,374)(184,373)
(185,372)(186,371)(187,370)(188,369)(189,368)(190,367)(191,366)(192,365)
(193,364)(194,363)(195,362)(196,361)(197,360)(198,359)(199,358)(200,357)
(201,356)(202,355)(203,354)(204,353)(205,352)(206,351)(207,350)(208,349)
(209,348)(210,347)(211,346)(212,345)(213,344)(214,343)(215,342)(216,341)
(217,340)(218,339)(219,338)(220,337)(221,336)(222,335)(223,334)(224,333)
(225,332)(226,331)(227,330)(228,329)(229,328)(230,327)(231,326)(232,325)
(233,324)(234,323)(235,322)(236,321)(237,320)(238,319)(239,318)(240,317)
(241,316)(242,315)(243,314)(244,313)(245,312)(246,311)(247,310)(248,309)
(249,308)(250,307)(251,306)(252,305)(253,304)(254,303)(255,302)(256,301)
(257,300)(258,299)(259,298)(260,297)(261,296)(262,295)(263,294)(264,293)
(265,292)(266,291)(267,290)(268,289)(269,288)(270,287)(271,286)(272,285)
(273,284)(274,283)(275,282)(276,281)(277,280);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(554)!(  2,277)(  3,276)(  4,275)(  5,274)(  6,273)(  7,272)(  8,271)
(  9,270)( 10,269)( 11,268)( 12,267)( 13,266)( 14,265)( 15,264)( 16,263)
( 17,262)( 18,261)( 19,260)( 20,259)( 21,258)( 22,257)( 23,256)( 24,255)
( 25,254)( 26,253)( 27,252)( 28,251)( 29,250)( 30,249)( 31,248)( 32,247)
( 33,246)( 34,245)( 35,244)( 36,243)( 37,242)( 38,241)( 39,240)( 40,239)
( 41,238)( 42,237)( 43,236)( 44,235)( 45,234)( 46,233)( 47,232)( 48,231)
( 49,230)( 50,229)( 51,228)( 52,227)( 53,226)( 54,225)( 55,224)( 56,223)
( 57,222)( 58,221)( 59,220)( 60,219)( 61,218)( 62,217)( 63,216)( 64,215)
( 65,214)( 66,213)( 67,212)( 68,211)( 69,210)( 70,209)( 71,208)( 72,207)
( 73,206)( 74,205)( 75,204)( 76,203)( 77,202)( 78,201)( 79,200)( 80,199)
( 81,198)( 82,197)( 83,196)( 84,195)( 85,194)( 86,193)( 87,192)( 88,191)
( 89,190)( 90,189)( 91,188)( 92,187)( 93,186)( 94,185)( 95,184)( 96,183)
( 97,182)( 98,181)( 99,180)(100,179)(101,178)(102,177)(103,176)(104,175)
(105,174)(106,173)(107,172)(108,171)(109,170)(110,169)(111,168)(112,167)
(113,166)(114,165)(115,164)(116,163)(117,162)(118,161)(119,160)(120,159)
(121,158)(122,157)(123,156)(124,155)(125,154)(126,153)(127,152)(128,151)
(129,150)(130,149)(131,148)(132,147)(133,146)(134,145)(135,144)(136,143)
(137,142)(138,141)(139,140)(279,554)(280,553)(281,552)(282,551)(283,550)
(284,549)(285,548)(286,547)(287,546)(288,545)(289,544)(290,543)(291,542)
(292,541)(293,540)(294,539)(295,538)(296,537)(297,536)(298,535)(299,534)
(300,533)(301,532)(302,531)(303,530)(304,529)(305,528)(306,527)(307,526)
(308,525)(309,524)(310,523)(311,522)(312,521)(313,520)(314,519)(315,518)
(316,517)(317,516)(318,515)(319,514)(320,513)(321,512)(322,511)(323,510)
(324,509)(325,508)(326,507)(327,506)(328,505)(329,504)(330,503)(331,502)
(332,501)(333,500)(334,499)(335,498)(336,497)(337,496)(338,495)(339,494)
(340,493)(341,492)(342,491)(343,490)(344,489)(345,488)(346,487)(347,486)
(348,485)(349,484)(350,483)(351,482)(352,481)(353,480)(354,479)(355,478)
(356,477)(357,476)(358,475)(359,474)(360,473)(361,472)(362,471)(363,470)
(364,469)(365,468)(366,467)(367,466)(368,465)(369,464)(370,463)(371,462)
(372,461)(373,460)(374,459)(375,458)(376,457)(377,456)(378,455)(379,454)
(380,453)(381,452)(382,451)(383,450)(384,449)(385,448)(386,447)(387,446)
(388,445)(389,444)(390,443)(391,442)(392,441)(393,440)(394,439)(395,438)
(396,437)(397,436)(398,435)(399,434)(400,433)(401,432)(402,431)(403,430)
(404,429)(405,428)(406,427)(407,426)(408,425)(409,424)(410,423)(411,422)
(412,421)(413,420)(414,419)(415,418)(416,417);
s1 := Sym(554)!(  1,279)(  2,278)(  3,554)(  4,553)(  5,552)(  6,551)(  7,550)
(  8,549)(  9,548)( 10,547)( 11,546)( 12,545)( 13,544)( 14,543)( 15,542)
( 16,541)( 17,540)( 18,539)( 19,538)( 20,537)( 21,536)( 22,535)( 23,534)
( 24,533)( 25,532)( 26,531)( 27,530)( 28,529)( 29,528)( 30,527)( 31,526)
( 32,525)( 33,524)( 34,523)( 35,522)( 36,521)( 37,520)( 38,519)( 39,518)
( 40,517)( 41,516)( 42,515)( 43,514)( 44,513)( 45,512)( 46,511)( 47,510)
( 48,509)( 49,508)( 50,507)( 51,506)( 52,505)( 53,504)( 54,503)( 55,502)
( 56,501)( 57,500)( 58,499)( 59,498)( 60,497)( 61,496)( 62,495)( 63,494)
( 64,493)( 65,492)( 66,491)( 67,490)( 68,489)( 69,488)( 70,487)( 71,486)
( 72,485)( 73,484)( 74,483)( 75,482)( 76,481)( 77,480)( 78,479)( 79,478)
( 80,477)( 81,476)( 82,475)( 83,474)( 84,473)( 85,472)( 86,471)( 87,470)
( 88,469)( 89,468)( 90,467)( 91,466)( 92,465)( 93,464)( 94,463)( 95,462)
( 96,461)( 97,460)( 98,459)( 99,458)(100,457)(101,456)(102,455)(103,454)
(104,453)(105,452)(106,451)(107,450)(108,449)(109,448)(110,447)(111,446)
(112,445)(113,444)(114,443)(115,442)(116,441)(117,440)(118,439)(119,438)
(120,437)(121,436)(122,435)(123,434)(124,433)(125,432)(126,431)(127,430)
(128,429)(129,428)(130,427)(131,426)(132,425)(133,424)(134,423)(135,422)
(136,421)(137,420)(138,419)(139,418)(140,417)(141,416)(142,415)(143,414)
(144,413)(145,412)(146,411)(147,410)(148,409)(149,408)(150,407)(151,406)
(152,405)(153,404)(154,403)(155,402)(156,401)(157,400)(158,399)(159,398)
(160,397)(161,396)(162,395)(163,394)(164,393)(165,392)(166,391)(167,390)
(168,389)(169,388)(170,387)(171,386)(172,385)(173,384)(174,383)(175,382)
(176,381)(177,380)(178,379)(179,378)(180,377)(181,376)(182,375)(183,374)
(184,373)(185,372)(186,371)(187,370)(188,369)(189,368)(190,367)(191,366)
(192,365)(193,364)(194,363)(195,362)(196,361)(197,360)(198,359)(199,358)
(200,357)(201,356)(202,355)(203,354)(204,353)(205,352)(206,351)(207,350)
(208,349)(209,348)(210,347)(211,346)(212,345)(213,344)(214,343)(215,342)
(216,341)(217,340)(218,339)(219,338)(220,337)(221,336)(222,335)(223,334)
(224,333)(225,332)(226,331)(227,330)(228,329)(229,328)(230,327)(231,326)
(232,325)(233,324)(234,323)(235,322)(236,321)(237,320)(238,319)(239,318)
(240,317)(241,316)(242,315)(243,314)(244,313)(245,312)(246,311)(247,310)
(248,309)(249,308)(250,307)(251,306)(252,305)(253,304)(254,303)(255,302)
(256,301)(257,300)(258,299)(259,298)(260,297)(261,296)(262,295)(263,294)
(264,293)(265,292)(266,291)(267,290)(268,289)(269,288)(270,287)(271,286)
(272,285)(273,284)(274,283)(275,282)(276,281)(277,280);
poly := sub<Sym(554)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope