include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {556}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {556}*1112
Also Known As : 556-gon, {556}. if this polytope has another name.
Group : SmallGroup(1112,10)
Rank : 2
Schlafli Type : {556}
Number of vertices, edges, etc : 556, 556
Order of s0s1 : 556
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {278}*556
4-fold quotients : {139}*278
139-fold quotients : {4}*8
278-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,139)( 3,138)( 4,137)( 5,136)( 6,135)( 7,134)( 8,133)( 9,132)
( 10,131)( 11,130)( 12,129)( 13,128)( 14,127)( 15,126)( 16,125)( 17,124)
( 18,123)( 19,122)( 20,121)( 21,120)( 22,119)( 23,118)( 24,117)( 25,116)
( 26,115)( 27,114)( 28,113)( 29,112)( 30,111)( 31,110)( 32,109)( 33,108)
( 34,107)( 35,106)( 36,105)( 37,104)( 38,103)( 39,102)( 40,101)( 41,100)
( 42, 99)( 43, 98)( 44, 97)( 45, 96)( 46, 95)( 47, 94)( 48, 93)( 49, 92)
( 50, 91)( 51, 90)( 52, 89)( 53, 88)( 54, 87)( 55, 86)( 56, 85)( 57, 84)
( 58, 83)( 59, 82)( 60, 81)( 61, 80)( 62, 79)( 63, 78)( 64, 77)( 65, 76)
( 66, 75)( 67, 74)( 68, 73)( 69, 72)( 70, 71)(141,278)(142,277)(143,276)
(144,275)(145,274)(146,273)(147,272)(148,271)(149,270)(150,269)(151,268)
(152,267)(153,266)(154,265)(155,264)(156,263)(157,262)(158,261)(159,260)
(160,259)(161,258)(162,257)(163,256)(164,255)(165,254)(166,253)(167,252)
(168,251)(169,250)(170,249)(171,248)(172,247)(173,246)(174,245)(175,244)
(176,243)(177,242)(178,241)(179,240)(180,239)(181,238)(182,237)(183,236)
(184,235)(185,234)(186,233)(187,232)(188,231)(189,230)(190,229)(191,228)
(192,227)(193,226)(194,225)(195,224)(196,223)(197,222)(198,221)(199,220)
(200,219)(201,218)(202,217)(203,216)(204,215)(205,214)(206,213)(207,212)
(208,211)(209,210)(279,418)(280,556)(281,555)(282,554)(283,553)(284,552)
(285,551)(286,550)(287,549)(288,548)(289,547)(290,546)(291,545)(292,544)
(293,543)(294,542)(295,541)(296,540)(297,539)(298,538)(299,537)(300,536)
(301,535)(302,534)(303,533)(304,532)(305,531)(306,530)(307,529)(308,528)
(309,527)(310,526)(311,525)(312,524)(313,523)(314,522)(315,521)(316,520)
(317,519)(318,518)(319,517)(320,516)(321,515)(322,514)(323,513)(324,512)
(325,511)(326,510)(327,509)(328,508)(329,507)(330,506)(331,505)(332,504)
(333,503)(334,502)(335,501)(336,500)(337,499)(338,498)(339,497)(340,496)
(341,495)(342,494)(343,493)(344,492)(345,491)(346,490)(347,489)(348,488)
(349,487)(350,486)(351,485)(352,484)(353,483)(354,482)(355,481)(356,480)
(357,479)(358,478)(359,477)(360,476)(361,475)(362,474)(363,473)(364,472)
(365,471)(366,470)(367,469)(368,468)(369,467)(370,466)(371,465)(372,464)
(373,463)(374,462)(375,461)(376,460)(377,459)(378,458)(379,457)(380,456)
(381,455)(382,454)(383,453)(384,452)(385,451)(386,450)(387,449)(388,448)
(389,447)(390,446)(391,445)(392,444)(393,443)(394,442)(395,441)(396,440)
(397,439)(398,438)(399,437)(400,436)(401,435)(402,434)(403,433)(404,432)
(405,431)(406,430)(407,429)(408,428)(409,427)(410,426)(411,425)(412,424)
(413,423)(414,422)(415,421)(416,420)(417,419);;
s1 := ( 1,280)( 2,279)( 3,417)( 4,416)( 5,415)( 6,414)( 7,413)( 8,412)
( 9,411)( 10,410)( 11,409)( 12,408)( 13,407)( 14,406)( 15,405)( 16,404)
( 17,403)( 18,402)( 19,401)( 20,400)( 21,399)( 22,398)( 23,397)( 24,396)
( 25,395)( 26,394)( 27,393)( 28,392)( 29,391)( 30,390)( 31,389)( 32,388)
( 33,387)( 34,386)( 35,385)( 36,384)( 37,383)( 38,382)( 39,381)( 40,380)
( 41,379)( 42,378)( 43,377)( 44,376)( 45,375)( 46,374)( 47,373)( 48,372)
( 49,371)( 50,370)( 51,369)( 52,368)( 53,367)( 54,366)( 55,365)( 56,364)
( 57,363)( 58,362)( 59,361)( 60,360)( 61,359)( 62,358)( 63,357)( 64,356)
( 65,355)( 66,354)( 67,353)( 68,352)( 69,351)( 70,350)( 71,349)( 72,348)
( 73,347)( 74,346)( 75,345)( 76,344)( 77,343)( 78,342)( 79,341)( 80,340)
( 81,339)( 82,338)( 83,337)( 84,336)( 85,335)( 86,334)( 87,333)( 88,332)
( 89,331)( 90,330)( 91,329)( 92,328)( 93,327)( 94,326)( 95,325)( 96,324)
( 97,323)( 98,322)( 99,321)(100,320)(101,319)(102,318)(103,317)(104,316)
(105,315)(106,314)(107,313)(108,312)(109,311)(110,310)(111,309)(112,308)
(113,307)(114,306)(115,305)(116,304)(117,303)(118,302)(119,301)(120,300)
(121,299)(122,298)(123,297)(124,296)(125,295)(126,294)(127,293)(128,292)
(129,291)(130,290)(131,289)(132,288)(133,287)(134,286)(135,285)(136,284)
(137,283)(138,282)(139,281)(140,419)(141,418)(142,556)(143,555)(144,554)
(145,553)(146,552)(147,551)(148,550)(149,549)(150,548)(151,547)(152,546)
(153,545)(154,544)(155,543)(156,542)(157,541)(158,540)(159,539)(160,538)
(161,537)(162,536)(163,535)(164,534)(165,533)(166,532)(167,531)(168,530)
(169,529)(170,528)(171,527)(172,526)(173,525)(174,524)(175,523)(176,522)
(177,521)(178,520)(179,519)(180,518)(181,517)(182,516)(183,515)(184,514)
(185,513)(186,512)(187,511)(188,510)(189,509)(190,508)(191,507)(192,506)
(193,505)(194,504)(195,503)(196,502)(197,501)(198,500)(199,499)(200,498)
(201,497)(202,496)(203,495)(204,494)(205,493)(206,492)(207,491)(208,490)
(209,489)(210,488)(211,487)(212,486)(213,485)(214,484)(215,483)(216,482)
(217,481)(218,480)(219,479)(220,478)(221,477)(222,476)(223,475)(224,474)
(225,473)(226,472)(227,471)(228,470)(229,469)(230,468)(231,467)(232,466)
(233,465)(234,464)(235,463)(236,462)(237,461)(238,460)(239,459)(240,458)
(241,457)(242,456)(243,455)(244,454)(245,453)(246,452)(247,451)(248,450)
(249,449)(250,448)(251,447)(252,446)(253,445)(254,444)(255,443)(256,442)
(257,441)(258,440)(259,439)(260,438)(261,437)(262,436)(263,435)(264,434)
(265,433)(266,432)(267,431)(268,430)(269,429)(270,428)(271,427)(272,426)
(273,425)(274,424)(275,423)(276,422)(277,421)(278,420);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(556)!( 2,139)( 3,138)( 4,137)( 5,136)( 6,135)( 7,134)( 8,133)
( 9,132)( 10,131)( 11,130)( 12,129)( 13,128)( 14,127)( 15,126)( 16,125)
( 17,124)( 18,123)( 19,122)( 20,121)( 21,120)( 22,119)( 23,118)( 24,117)
( 25,116)( 26,115)( 27,114)( 28,113)( 29,112)( 30,111)( 31,110)( 32,109)
( 33,108)( 34,107)( 35,106)( 36,105)( 37,104)( 38,103)( 39,102)( 40,101)
( 41,100)( 42, 99)( 43, 98)( 44, 97)( 45, 96)( 46, 95)( 47, 94)( 48, 93)
( 49, 92)( 50, 91)( 51, 90)( 52, 89)( 53, 88)( 54, 87)( 55, 86)( 56, 85)
( 57, 84)( 58, 83)( 59, 82)( 60, 81)( 61, 80)( 62, 79)( 63, 78)( 64, 77)
( 65, 76)( 66, 75)( 67, 74)( 68, 73)( 69, 72)( 70, 71)(141,278)(142,277)
(143,276)(144,275)(145,274)(146,273)(147,272)(148,271)(149,270)(150,269)
(151,268)(152,267)(153,266)(154,265)(155,264)(156,263)(157,262)(158,261)
(159,260)(160,259)(161,258)(162,257)(163,256)(164,255)(165,254)(166,253)
(167,252)(168,251)(169,250)(170,249)(171,248)(172,247)(173,246)(174,245)
(175,244)(176,243)(177,242)(178,241)(179,240)(180,239)(181,238)(182,237)
(183,236)(184,235)(185,234)(186,233)(187,232)(188,231)(189,230)(190,229)
(191,228)(192,227)(193,226)(194,225)(195,224)(196,223)(197,222)(198,221)
(199,220)(200,219)(201,218)(202,217)(203,216)(204,215)(205,214)(206,213)
(207,212)(208,211)(209,210)(279,418)(280,556)(281,555)(282,554)(283,553)
(284,552)(285,551)(286,550)(287,549)(288,548)(289,547)(290,546)(291,545)
(292,544)(293,543)(294,542)(295,541)(296,540)(297,539)(298,538)(299,537)
(300,536)(301,535)(302,534)(303,533)(304,532)(305,531)(306,530)(307,529)
(308,528)(309,527)(310,526)(311,525)(312,524)(313,523)(314,522)(315,521)
(316,520)(317,519)(318,518)(319,517)(320,516)(321,515)(322,514)(323,513)
(324,512)(325,511)(326,510)(327,509)(328,508)(329,507)(330,506)(331,505)
(332,504)(333,503)(334,502)(335,501)(336,500)(337,499)(338,498)(339,497)
(340,496)(341,495)(342,494)(343,493)(344,492)(345,491)(346,490)(347,489)
(348,488)(349,487)(350,486)(351,485)(352,484)(353,483)(354,482)(355,481)
(356,480)(357,479)(358,478)(359,477)(360,476)(361,475)(362,474)(363,473)
(364,472)(365,471)(366,470)(367,469)(368,468)(369,467)(370,466)(371,465)
(372,464)(373,463)(374,462)(375,461)(376,460)(377,459)(378,458)(379,457)
(380,456)(381,455)(382,454)(383,453)(384,452)(385,451)(386,450)(387,449)
(388,448)(389,447)(390,446)(391,445)(392,444)(393,443)(394,442)(395,441)
(396,440)(397,439)(398,438)(399,437)(400,436)(401,435)(402,434)(403,433)
(404,432)(405,431)(406,430)(407,429)(408,428)(409,427)(410,426)(411,425)
(412,424)(413,423)(414,422)(415,421)(416,420)(417,419);
s1 := Sym(556)!( 1,280)( 2,279)( 3,417)( 4,416)( 5,415)( 6,414)( 7,413)
( 8,412)( 9,411)( 10,410)( 11,409)( 12,408)( 13,407)( 14,406)( 15,405)
( 16,404)( 17,403)( 18,402)( 19,401)( 20,400)( 21,399)( 22,398)( 23,397)
( 24,396)( 25,395)( 26,394)( 27,393)( 28,392)( 29,391)( 30,390)( 31,389)
( 32,388)( 33,387)( 34,386)( 35,385)( 36,384)( 37,383)( 38,382)( 39,381)
( 40,380)( 41,379)( 42,378)( 43,377)( 44,376)( 45,375)( 46,374)( 47,373)
( 48,372)( 49,371)( 50,370)( 51,369)( 52,368)( 53,367)( 54,366)( 55,365)
( 56,364)( 57,363)( 58,362)( 59,361)( 60,360)( 61,359)( 62,358)( 63,357)
( 64,356)( 65,355)( 66,354)( 67,353)( 68,352)( 69,351)( 70,350)( 71,349)
( 72,348)( 73,347)( 74,346)( 75,345)( 76,344)( 77,343)( 78,342)( 79,341)
( 80,340)( 81,339)( 82,338)( 83,337)( 84,336)( 85,335)( 86,334)( 87,333)
( 88,332)( 89,331)( 90,330)( 91,329)( 92,328)( 93,327)( 94,326)( 95,325)
( 96,324)( 97,323)( 98,322)( 99,321)(100,320)(101,319)(102,318)(103,317)
(104,316)(105,315)(106,314)(107,313)(108,312)(109,311)(110,310)(111,309)
(112,308)(113,307)(114,306)(115,305)(116,304)(117,303)(118,302)(119,301)
(120,300)(121,299)(122,298)(123,297)(124,296)(125,295)(126,294)(127,293)
(128,292)(129,291)(130,290)(131,289)(132,288)(133,287)(134,286)(135,285)
(136,284)(137,283)(138,282)(139,281)(140,419)(141,418)(142,556)(143,555)
(144,554)(145,553)(146,552)(147,551)(148,550)(149,549)(150,548)(151,547)
(152,546)(153,545)(154,544)(155,543)(156,542)(157,541)(158,540)(159,539)
(160,538)(161,537)(162,536)(163,535)(164,534)(165,533)(166,532)(167,531)
(168,530)(169,529)(170,528)(171,527)(172,526)(173,525)(174,524)(175,523)
(176,522)(177,521)(178,520)(179,519)(180,518)(181,517)(182,516)(183,515)
(184,514)(185,513)(186,512)(187,511)(188,510)(189,509)(190,508)(191,507)
(192,506)(193,505)(194,504)(195,503)(196,502)(197,501)(198,500)(199,499)
(200,498)(201,497)(202,496)(203,495)(204,494)(205,493)(206,492)(207,491)
(208,490)(209,489)(210,488)(211,487)(212,486)(213,485)(214,484)(215,483)
(216,482)(217,481)(218,480)(219,479)(220,478)(221,477)(222,476)(223,475)
(224,474)(225,473)(226,472)(227,471)(228,470)(229,469)(230,468)(231,467)
(232,466)(233,465)(234,464)(235,463)(236,462)(237,461)(238,460)(239,459)
(240,458)(241,457)(242,456)(243,455)(244,454)(245,453)(246,452)(247,451)
(248,450)(249,449)(250,448)(251,447)(252,446)(253,445)(254,444)(255,443)
(256,442)(257,441)(258,440)(259,439)(260,438)(261,437)(262,436)(263,435)
(264,434)(265,433)(266,432)(267,431)(268,430)(269,429)(270,428)(271,427)
(272,426)(273,425)(274,424)(275,423)(276,422)(277,421)(278,420);
poly := sub<Sym(556)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope