include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,2,20}*1120
if this polytope has a name.
Group : SmallGroup(1120,988)
Rank : 4
Schlafli Type : {14,2,20}
Number of vertices, edges, etc : 14, 14, 20, 20
Order of s0s1s2s3 : 140
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,20}*560, {14,2,10}*560
4-fold quotients : {7,2,10}*280, {14,2,5}*280
5-fold quotients : {14,2,4}*224
7-fold quotients : {2,2,20}*160
8-fold quotients : {7,2,5}*140
10-fold quotients : {7,2,4}*112, {14,2,2}*112
14-fold quotients : {2,2,10}*80
20-fold quotients : {7,2,2}*56
28-fold quotients : {2,2,5}*40
35-fold quotients : {2,2,4}*32
70-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
s2 := (16,17)(18,19)(21,24)(22,23)(25,26)(27,28)(29,32)(30,31)(33,34);;
s3 := (15,21)(16,18)(17,27)(19,29)(20,23)(22,25)(24,33)(26,30)(28,31)(32,34);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(34)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(34)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
s2 := Sym(34)!(16,17)(18,19)(21,24)(22,23)(25,26)(27,28)(29,32)(30,31)(33,34);
s3 := Sym(34)!(15,21)(16,18)(17,27)(19,29)(20,23)(22,25)(24,33)(26,30)(28,31)
(32,34);
poly := sub<Sym(34)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope