include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20}*80
if this polytope has a name.
Group : SmallGroup(80,37)
Rank : 3
Schlafli Type : {2,20}
Number of vertices, edges, etc : 2, 20, 20
Order of s0s1s2 : 20
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,20,2} of size 160
{2,20,4} of size 320
{2,20,6} of size 480
{2,20,6} of size 480
{2,20,4} of size 640
{2,20,8} of size 640
{2,20,8} of size 640
{2,20,6} of size 720
{2,20,10} of size 800
{2,20,10} of size 800
{2,20,10} of size 800
{2,20,12} of size 960
{2,20,6} of size 960
{2,20,6} of size 960
{2,20,10} of size 960
{2,20,10} of size 960
{2,20,3} of size 960
{2,20,5} of size 960
{2,20,6} of size 960
{2,20,14} of size 1120
{2,20,8} of size 1280
{2,20,16} of size 1280
{2,20,16} of size 1280
{2,20,4} of size 1280
{2,20,8} of size 1280
{2,20,4} of size 1280
{2,20,4} of size 1280
{2,20,4} of size 1280
{2,20,4} of size 1280
{2,20,5} of size 1280
{2,20,5} of size 1280
{2,20,18} of size 1440
{2,20,18} of size 1440
{2,20,4} of size 1440
{2,20,6} of size 1440
{2,20,20} of size 1600
{2,20,20} of size 1600
{2,20,20} of size 1600
{2,20,4} of size 1600
{2,20,22} of size 1760
{2,20,24} of size 1920
{2,20,24} of size 1920
{2,20,12} of size 1920
{2,20,12} of size 1920
{2,20,6} of size 1920
{2,20,12} of size 1920
{2,20,4} of size 1920
{2,20,4} of size 1920
{2,20,6} of size 1920
{2,20,6} of size 1920
{2,20,10} of size 1920
{2,20,4} of size 1920
{2,20,4} of size 1920
{2,20,6} of size 1920
{2,20,6} of size 1920
{2,20,10} of size 1920
{2,20,4} of size 2000
{2,20,10} of size 2000
{2,20,10} of size 2000
{2,20,10} of size 2000
{2,20,10} of size 2000
{2,20,10} of size 2000
Vertex Figure Of :
{2,2,20} of size 160
{3,2,20} of size 240
{4,2,20} of size 320
{5,2,20} of size 400
{6,2,20} of size 480
{7,2,20} of size 560
{8,2,20} of size 640
{9,2,20} of size 720
{10,2,20} of size 800
{11,2,20} of size 880
{12,2,20} of size 960
{13,2,20} of size 1040
{14,2,20} of size 1120
{15,2,20} of size 1200
{16,2,20} of size 1280
{17,2,20} of size 1360
{18,2,20} of size 1440
{19,2,20} of size 1520
{20,2,20} of size 1600
{21,2,20} of size 1680
{22,2,20} of size 1760
{23,2,20} of size 1840
{24,2,20} of size 1920
{25,2,20} of size 2000
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10}*40
4-fold quotients : {2,5}*20
5-fold quotients : {2,4}*16
10-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,20}*160, {2,40}*160
3-fold covers : {6,20}*240a, {2,60}*240
4-fold covers : {4,40}*320a, {4,20}*320, {4,40}*320b, {8,20}*320a, {8,20}*320b, {2,80}*320
5-fold covers : {2,100}*400, {10,20}*400a, {10,20}*400b
6-fold covers : {6,40}*480, {12,20}*480, {4,60}*480a, {2,120}*480
7-fold covers : {14,20}*560, {2,140}*560
8-fold covers : {4,40}*640a, {8,40}*640a, {8,40}*640b, {8,20}*640a, {8,40}*640c, {8,40}*640d, {4,80}*640a, {4,80}*640b, {4,20}*640a, {4,40}*640b, {8,20}*640b, {16,20}*640a, {16,20}*640b, {2,160}*640
9-fold covers : {18,20}*720a, {2,180}*720, {6,60}*720a, {6,60}*720b, {6,60}*720c, {6,20}*720
10-fold covers : {4,100}*800, {2,200}*800, {10,40}*800a, {10,40}*800b, {20,20}*800a, {20,20}*800b
11-fold covers : {22,20}*880, {2,220}*880
12-fold covers : {6,80}*960, {12,20}*960a, {24,20}*960a, {12,40}*960a, {24,20}*960b, {12,40}*960b, {4,120}*960a, {4,60}*960a, {4,120}*960b, {8,60}*960a, {8,60}*960b, {2,240}*960, {6,20}*960e, {6,60}*960a, {4,60}*960b
13-fold covers : {26,20}*1040, {2,260}*1040
14-fold covers : {14,40}*1120, {28,20}*1120, {4,140}*1120, {2,280}*1120
15-fold covers : {6,100}*1200a, {2,300}*1200, {30,20}*1200a, {30,20}*1200b, {10,60}*1200b, {10,60}*1200c
16-fold covers : {8,40}*1280a, {8,20}*1280a, {8,40}*1280b, {4,40}*1280a, {8,40}*1280c, {8,40}*1280d, {16,20}*1280a, {4,80}*1280a, {16,20}*1280b, {4,80}*1280b, {8,80}*1280a, {16,40}*1280a, {8,80}*1280b, {16,40}*1280b, {16,40}*1280c, {8,80}*1280c, {8,80}*1280d, {16,40}*1280d, {16,40}*1280e, {8,80}*1280e, {8,80}*1280f, {16,40}*1280f, {32,20}*1280a, {4,160}*1280a, {32,20}*1280b, {4,160}*1280b, {4,20}*1280a, {4,40}*1280b, {8,20}*1280b, {8,20}*1280c, {8,40}*1280e, {4,40}*1280c, {4,40}*1280d, {8,20}*1280d, {8,40}*1280f, {8,40}*1280g, {8,40}*1280h, {2,320}*1280, {4,20}*1280c
17-fold covers : {34,20}*1360, {2,340}*1360
18-fold covers : {18,40}*1440, {36,20}*1440, {4,180}*1440a, {2,360}*1440, {6,120}*1440a, {12,60}*1440a, {6,120}*1440b, {6,120}*1440c, {12,60}*1440b, {12,60}*1440c, {4,20}*1440, {4,60}*1440, {6,40}*1440, {12,20}*1440
19-fold covers : {38,20}*1520, {2,380}*1520
20-fold covers : {4,200}*1600a, {4,100}*1600, {4,200}*1600b, {8,100}*1600a, {8,100}*1600b, {2,400}*1600, {10,80}*1600a, {10,80}*1600b, {40,20}*1600a, {20,20}*1600a, {20,20}*1600b, {40,20}*1600b, {20,40}*1600c, {20,40}*1600d, {40,20}*1600c, {20,40}*1600e, {20,40}*1600f, {40,20}*1600e
21-fold covers : {14,60}*1680, {42,20}*1680a, {6,140}*1680a, {2,420}*1680
22-fold covers : {22,40}*1760, {44,20}*1760, {4,220}*1760, {2,440}*1760
23-fold covers : {46,20}*1840, {2,460}*1840
24-fold covers : {8,60}*1920a, {4,120}*1920a, {12,40}*1920a, {24,20}*1920a, {8,120}*1920a, {8,120}*1920b, {8,120}*1920c, {24,40}*1920a, {24,40}*1920b, {24,40}*1920c, {8,120}*1920d, {24,40}*1920d, {16,60}*1920a, {4,240}*1920a, {12,80}*1920a, {48,20}*1920a, {16,60}*1920b, {4,240}*1920b, {12,80}*1920b, {48,20}*1920b, {4,60}*1920a, {4,120}*1920b, {8,60}*1920b, {12,40}*1920b, {24,20}*1920b, {12,20}*1920a, {2,480}*1920, {6,160}*1920, {12,60}*1920b, {6,40}*1920b, {6,60}*1920, {6,40}*1920d, {6,120}*1920a, {6,20}*1920b, {6,120}*1920b, {12,20}*1920b, {12,20}*1920c, {12,60}*1920c, {4,60}*1920d, {8,60}*1920e, {8,60}*1920f, {4,120}*1920c, {4,120}*1920d
25-fold covers : {2,500}*2000, {50,20}*2000a, {10,100}*2000a, {10,100}*2000b, {10,20}*2000a, {10,20}*2000b, {10,20}*2000h, {10,20}*2000j
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22);;
s2 := ( 3, 9)( 4, 6)( 5,15)( 7,17)( 8,11)(10,13)(12,21)(14,18)(16,19)(20,22);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(22)!(1,2);
s1 := Sym(22)!( 4, 5)( 6, 7)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22);
s2 := Sym(22)!( 3, 9)( 4, 6)( 5,15)( 7,17)( 8,11)(10,13)(12,21)(14,18)(16,19)
(20,22);
poly := sub<Sym(22)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope