Polytope of Type {562}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {562}*1124
Also Known As : 562-gon, {562}. if this polytope has another name.
Group : SmallGroup(1124,4)
Rank : 2
Schlafli Type : {562}
Number of vertices, edges, etc : 562, 562
Order of s0s1 : 562
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {281}*562
   281-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,281)(  3,280)(  4,279)(  5,278)(  6,277)(  7,276)(  8,275)(  9,274)
( 10,273)( 11,272)( 12,271)( 13,270)( 14,269)( 15,268)( 16,267)( 17,266)
( 18,265)( 19,264)( 20,263)( 21,262)( 22,261)( 23,260)( 24,259)( 25,258)
( 26,257)( 27,256)( 28,255)( 29,254)( 30,253)( 31,252)( 32,251)( 33,250)
( 34,249)( 35,248)( 36,247)( 37,246)( 38,245)( 39,244)( 40,243)( 41,242)
( 42,241)( 43,240)( 44,239)( 45,238)( 46,237)( 47,236)( 48,235)( 49,234)
( 50,233)( 51,232)( 52,231)( 53,230)( 54,229)( 55,228)( 56,227)( 57,226)
( 58,225)( 59,224)( 60,223)( 61,222)( 62,221)( 63,220)( 64,219)( 65,218)
( 66,217)( 67,216)( 68,215)( 69,214)( 70,213)( 71,212)( 72,211)( 73,210)
( 74,209)( 75,208)( 76,207)( 77,206)( 78,205)( 79,204)( 80,203)( 81,202)
( 82,201)( 83,200)( 84,199)( 85,198)( 86,197)( 87,196)( 88,195)( 89,194)
( 90,193)( 91,192)( 92,191)( 93,190)( 94,189)( 95,188)( 96,187)( 97,186)
( 98,185)( 99,184)(100,183)(101,182)(102,181)(103,180)(104,179)(105,178)
(106,177)(107,176)(108,175)(109,174)(110,173)(111,172)(112,171)(113,170)
(114,169)(115,168)(116,167)(117,166)(118,165)(119,164)(120,163)(121,162)
(122,161)(123,160)(124,159)(125,158)(126,157)(127,156)(128,155)(129,154)
(130,153)(131,152)(132,151)(133,150)(134,149)(135,148)(136,147)(137,146)
(138,145)(139,144)(140,143)(141,142)(283,562)(284,561)(285,560)(286,559)
(287,558)(288,557)(289,556)(290,555)(291,554)(292,553)(293,552)(294,551)
(295,550)(296,549)(297,548)(298,547)(299,546)(300,545)(301,544)(302,543)
(303,542)(304,541)(305,540)(306,539)(307,538)(308,537)(309,536)(310,535)
(311,534)(312,533)(313,532)(314,531)(315,530)(316,529)(317,528)(318,527)
(319,526)(320,525)(321,524)(322,523)(323,522)(324,521)(325,520)(326,519)
(327,518)(328,517)(329,516)(330,515)(331,514)(332,513)(333,512)(334,511)
(335,510)(336,509)(337,508)(338,507)(339,506)(340,505)(341,504)(342,503)
(343,502)(344,501)(345,500)(346,499)(347,498)(348,497)(349,496)(350,495)
(351,494)(352,493)(353,492)(354,491)(355,490)(356,489)(357,488)(358,487)
(359,486)(360,485)(361,484)(362,483)(363,482)(364,481)(365,480)(366,479)
(367,478)(368,477)(369,476)(370,475)(371,474)(372,473)(373,472)(374,471)
(375,470)(376,469)(377,468)(378,467)(379,466)(380,465)(381,464)(382,463)
(383,462)(384,461)(385,460)(386,459)(387,458)(388,457)(389,456)(390,455)
(391,454)(392,453)(393,452)(394,451)(395,450)(396,449)(397,448)(398,447)
(399,446)(400,445)(401,444)(402,443)(403,442)(404,441)(405,440)(406,439)
(407,438)(408,437)(409,436)(410,435)(411,434)(412,433)(413,432)(414,431)
(415,430)(416,429)(417,428)(418,427)(419,426)(420,425)(421,424)(422,423);;
s1 := (  1,283)(  2,282)(  3,562)(  4,561)(  5,560)(  6,559)(  7,558)(  8,557)
(  9,556)( 10,555)( 11,554)( 12,553)( 13,552)( 14,551)( 15,550)( 16,549)
( 17,548)( 18,547)( 19,546)( 20,545)( 21,544)( 22,543)( 23,542)( 24,541)
( 25,540)( 26,539)( 27,538)( 28,537)( 29,536)( 30,535)( 31,534)( 32,533)
( 33,532)( 34,531)( 35,530)( 36,529)( 37,528)( 38,527)( 39,526)( 40,525)
( 41,524)( 42,523)( 43,522)( 44,521)( 45,520)( 46,519)( 47,518)( 48,517)
( 49,516)( 50,515)( 51,514)( 52,513)( 53,512)( 54,511)( 55,510)( 56,509)
( 57,508)( 58,507)( 59,506)( 60,505)( 61,504)( 62,503)( 63,502)( 64,501)
( 65,500)( 66,499)( 67,498)( 68,497)( 69,496)( 70,495)( 71,494)( 72,493)
( 73,492)( 74,491)( 75,490)( 76,489)( 77,488)( 78,487)( 79,486)( 80,485)
( 81,484)( 82,483)( 83,482)( 84,481)( 85,480)( 86,479)( 87,478)( 88,477)
( 89,476)( 90,475)( 91,474)( 92,473)( 93,472)( 94,471)( 95,470)( 96,469)
( 97,468)( 98,467)( 99,466)(100,465)(101,464)(102,463)(103,462)(104,461)
(105,460)(106,459)(107,458)(108,457)(109,456)(110,455)(111,454)(112,453)
(113,452)(114,451)(115,450)(116,449)(117,448)(118,447)(119,446)(120,445)
(121,444)(122,443)(123,442)(124,441)(125,440)(126,439)(127,438)(128,437)
(129,436)(130,435)(131,434)(132,433)(133,432)(134,431)(135,430)(136,429)
(137,428)(138,427)(139,426)(140,425)(141,424)(142,423)(143,422)(144,421)
(145,420)(146,419)(147,418)(148,417)(149,416)(150,415)(151,414)(152,413)
(153,412)(154,411)(155,410)(156,409)(157,408)(158,407)(159,406)(160,405)
(161,404)(162,403)(163,402)(164,401)(165,400)(166,399)(167,398)(168,397)
(169,396)(170,395)(171,394)(172,393)(173,392)(174,391)(175,390)(176,389)
(177,388)(178,387)(179,386)(180,385)(181,384)(182,383)(183,382)(184,381)
(185,380)(186,379)(187,378)(188,377)(189,376)(190,375)(191,374)(192,373)
(193,372)(194,371)(195,370)(196,369)(197,368)(198,367)(199,366)(200,365)
(201,364)(202,363)(203,362)(204,361)(205,360)(206,359)(207,358)(208,357)
(209,356)(210,355)(211,354)(212,353)(213,352)(214,351)(215,350)(216,349)
(217,348)(218,347)(219,346)(220,345)(221,344)(222,343)(223,342)(224,341)
(225,340)(226,339)(227,338)(228,337)(229,336)(230,335)(231,334)(232,333)
(233,332)(234,331)(235,330)(236,329)(237,328)(238,327)(239,326)(240,325)
(241,324)(242,323)(243,322)(244,321)(245,320)(246,319)(247,318)(248,317)
(249,316)(250,315)(251,314)(252,313)(253,312)(254,311)(255,310)(256,309)
(257,308)(258,307)(259,306)(260,305)(261,304)(262,303)(263,302)(264,301)
(265,300)(266,299)(267,298)(268,297)(269,296)(270,295)(271,294)(272,293)
(273,292)(274,291)(275,290)(276,289)(277,288)(278,287)(279,286)(280,285)
(281,284);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(562)!(  2,281)(  3,280)(  4,279)(  5,278)(  6,277)(  7,276)(  8,275)
(  9,274)( 10,273)( 11,272)( 12,271)( 13,270)( 14,269)( 15,268)( 16,267)
( 17,266)( 18,265)( 19,264)( 20,263)( 21,262)( 22,261)( 23,260)( 24,259)
( 25,258)( 26,257)( 27,256)( 28,255)( 29,254)( 30,253)( 31,252)( 32,251)
( 33,250)( 34,249)( 35,248)( 36,247)( 37,246)( 38,245)( 39,244)( 40,243)
( 41,242)( 42,241)( 43,240)( 44,239)( 45,238)( 46,237)( 47,236)( 48,235)
( 49,234)( 50,233)( 51,232)( 52,231)( 53,230)( 54,229)( 55,228)( 56,227)
( 57,226)( 58,225)( 59,224)( 60,223)( 61,222)( 62,221)( 63,220)( 64,219)
( 65,218)( 66,217)( 67,216)( 68,215)( 69,214)( 70,213)( 71,212)( 72,211)
( 73,210)( 74,209)( 75,208)( 76,207)( 77,206)( 78,205)( 79,204)( 80,203)
( 81,202)( 82,201)( 83,200)( 84,199)( 85,198)( 86,197)( 87,196)( 88,195)
( 89,194)( 90,193)( 91,192)( 92,191)( 93,190)( 94,189)( 95,188)( 96,187)
( 97,186)( 98,185)( 99,184)(100,183)(101,182)(102,181)(103,180)(104,179)
(105,178)(106,177)(107,176)(108,175)(109,174)(110,173)(111,172)(112,171)
(113,170)(114,169)(115,168)(116,167)(117,166)(118,165)(119,164)(120,163)
(121,162)(122,161)(123,160)(124,159)(125,158)(126,157)(127,156)(128,155)
(129,154)(130,153)(131,152)(132,151)(133,150)(134,149)(135,148)(136,147)
(137,146)(138,145)(139,144)(140,143)(141,142)(283,562)(284,561)(285,560)
(286,559)(287,558)(288,557)(289,556)(290,555)(291,554)(292,553)(293,552)
(294,551)(295,550)(296,549)(297,548)(298,547)(299,546)(300,545)(301,544)
(302,543)(303,542)(304,541)(305,540)(306,539)(307,538)(308,537)(309,536)
(310,535)(311,534)(312,533)(313,532)(314,531)(315,530)(316,529)(317,528)
(318,527)(319,526)(320,525)(321,524)(322,523)(323,522)(324,521)(325,520)
(326,519)(327,518)(328,517)(329,516)(330,515)(331,514)(332,513)(333,512)
(334,511)(335,510)(336,509)(337,508)(338,507)(339,506)(340,505)(341,504)
(342,503)(343,502)(344,501)(345,500)(346,499)(347,498)(348,497)(349,496)
(350,495)(351,494)(352,493)(353,492)(354,491)(355,490)(356,489)(357,488)
(358,487)(359,486)(360,485)(361,484)(362,483)(363,482)(364,481)(365,480)
(366,479)(367,478)(368,477)(369,476)(370,475)(371,474)(372,473)(373,472)
(374,471)(375,470)(376,469)(377,468)(378,467)(379,466)(380,465)(381,464)
(382,463)(383,462)(384,461)(385,460)(386,459)(387,458)(388,457)(389,456)
(390,455)(391,454)(392,453)(393,452)(394,451)(395,450)(396,449)(397,448)
(398,447)(399,446)(400,445)(401,444)(402,443)(403,442)(404,441)(405,440)
(406,439)(407,438)(408,437)(409,436)(410,435)(411,434)(412,433)(413,432)
(414,431)(415,430)(416,429)(417,428)(418,427)(419,426)(420,425)(421,424)
(422,423);
s1 := Sym(562)!(  1,283)(  2,282)(  3,562)(  4,561)(  5,560)(  6,559)(  7,558)
(  8,557)(  9,556)( 10,555)( 11,554)( 12,553)( 13,552)( 14,551)( 15,550)
( 16,549)( 17,548)( 18,547)( 19,546)( 20,545)( 21,544)( 22,543)( 23,542)
( 24,541)( 25,540)( 26,539)( 27,538)( 28,537)( 29,536)( 30,535)( 31,534)
( 32,533)( 33,532)( 34,531)( 35,530)( 36,529)( 37,528)( 38,527)( 39,526)
( 40,525)( 41,524)( 42,523)( 43,522)( 44,521)( 45,520)( 46,519)( 47,518)
( 48,517)( 49,516)( 50,515)( 51,514)( 52,513)( 53,512)( 54,511)( 55,510)
( 56,509)( 57,508)( 58,507)( 59,506)( 60,505)( 61,504)( 62,503)( 63,502)
( 64,501)( 65,500)( 66,499)( 67,498)( 68,497)( 69,496)( 70,495)( 71,494)
( 72,493)( 73,492)( 74,491)( 75,490)( 76,489)( 77,488)( 78,487)( 79,486)
( 80,485)( 81,484)( 82,483)( 83,482)( 84,481)( 85,480)( 86,479)( 87,478)
( 88,477)( 89,476)( 90,475)( 91,474)( 92,473)( 93,472)( 94,471)( 95,470)
( 96,469)( 97,468)( 98,467)( 99,466)(100,465)(101,464)(102,463)(103,462)
(104,461)(105,460)(106,459)(107,458)(108,457)(109,456)(110,455)(111,454)
(112,453)(113,452)(114,451)(115,450)(116,449)(117,448)(118,447)(119,446)
(120,445)(121,444)(122,443)(123,442)(124,441)(125,440)(126,439)(127,438)
(128,437)(129,436)(130,435)(131,434)(132,433)(133,432)(134,431)(135,430)
(136,429)(137,428)(138,427)(139,426)(140,425)(141,424)(142,423)(143,422)
(144,421)(145,420)(146,419)(147,418)(148,417)(149,416)(150,415)(151,414)
(152,413)(153,412)(154,411)(155,410)(156,409)(157,408)(158,407)(159,406)
(160,405)(161,404)(162,403)(163,402)(164,401)(165,400)(166,399)(167,398)
(168,397)(169,396)(170,395)(171,394)(172,393)(173,392)(174,391)(175,390)
(176,389)(177,388)(178,387)(179,386)(180,385)(181,384)(182,383)(183,382)
(184,381)(185,380)(186,379)(187,378)(188,377)(189,376)(190,375)(191,374)
(192,373)(193,372)(194,371)(195,370)(196,369)(197,368)(198,367)(199,366)
(200,365)(201,364)(202,363)(203,362)(204,361)(205,360)(206,359)(207,358)
(208,357)(209,356)(210,355)(211,354)(212,353)(213,352)(214,351)(215,350)
(216,349)(217,348)(218,347)(219,346)(220,345)(221,344)(222,343)(223,342)
(224,341)(225,340)(226,339)(227,338)(228,337)(229,336)(230,335)(231,334)
(232,333)(233,332)(234,331)(235,330)(236,329)(237,328)(238,327)(239,326)
(240,325)(241,324)(242,323)(243,322)(244,321)(245,320)(246,319)(247,318)
(248,317)(249,316)(250,315)(251,314)(252,313)(253,312)(254,311)(255,310)
(256,309)(257,308)(258,307)(259,306)(260,305)(261,304)(262,303)(263,302)
(264,301)(265,300)(266,299)(267,298)(268,297)(269,296)(270,295)(271,294)
(272,293)(273,292)(274,291)(275,290)(276,289)(277,288)(278,287)(279,286)
(280,285)(281,284);
poly := sub<Sym(562)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope