include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {566}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {566}*1132
Also Known As : 566-gon, {566}. if this polytope has another name.
Group : SmallGroup(1132,3)
Rank : 2
Schlafli Type : {566}
Number of vertices, edges, etc : 566, 566
Order of s0s1 : 566
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {283}*566
283-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,283)( 3,282)( 4,281)( 5,280)( 6,279)( 7,278)( 8,277)( 9,276)
( 10,275)( 11,274)( 12,273)( 13,272)( 14,271)( 15,270)( 16,269)( 17,268)
( 18,267)( 19,266)( 20,265)( 21,264)( 22,263)( 23,262)( 24,261)( 25,260)
( 26,259)( 27,258)( 28,257)( 29,256)( 30,255)( 31,254)( 32,253)( 33,252)
( 34,251)( 35,250)( 36,249)( 37,248)( 38,247)( 39,246)( 40,245)( 41,244)
( 42,243)( 43,242)( 44,241)( 45,240)( 46,239)( 47,238)( 48,237)( 49,236)
( 50,235)( 51,234)( 52,233)( 53,232)( 54,231)( 55,230)( 56,229)( 57,228)
( 58,227)( 59,226)( 60,225)( 61,224)( 62,223)( 63,222)( 64,221)( 65,220)
( 66,219)( 67,218)( 68,217)( 69,216)( 70,215)( 71,214)( 72,213)( 73,212)
( 74,211)( 75,210)( 76,209)( 77,208)( 78,207)( 79,206)( 80,205)( 81,204)
( 82,203)( 83,202)( 84,201)( 85,200)( 86,199)( 87,198)( 88,197)( 89,196)
( 90,195)( 91,194)( 92,193)( 93,192)( 94,191)( 95,190)( 96,189)( 97,188)
( 98,187)( 99,186)(100,185)(101,184)(102,183)(103,182)(104,181)(105,180)
(106,179)(107,178)(108,177)(109,176)(110,175)(111,174)(112,173)(113,172)
(114,171)(115,170)(116,169)(117,168)(118,167)(119,166)(120,165)(121,164)
(122,163)(123,162)(124,161)(125,160)(126,159)(127,158)(128,157)(129,156)
(130,155)(131,154)(132,153)(133,152)(134,151)(135,150)(136,149)(137,148)
(138,147)(139,146)(140,145)(141,144)(142,143)(285,566)(286,565)(287,564)
(288,563)(289,562)(290,561)(291,560)(292,559)(293,558)(294,557)(295,556)
(296,555)(297,554)(298,553)(299,552)(300,551)(301,550)(302,549)(303,548)
(304,547)(305,546)(306,545)(307,544)(308,543)(309,542)(310,541)(311,540)
(312,539)(313,538)(314,537)(315,536)(316,535)(317,534)(318,533)(319,532)
(320,531)(321,530)(322,529)(323,528)(324,527)(325,526)(326,525)(327,524)
(328,523)(329,522)(330,521)(331,520)(332,519)(333,518)(334,517)(335,516)
(336,515)(337,514)(338,513)(339,512)(340,511)(341,510)(342,509)(343,508)
(344,507)(345,506)(346,505)(347,504)(348,503)(349,502)(350,501)(351,500)
(352,499)(353,498)(354,497)(355,496)(356,495)(357,494)(358,493)(359,492)
(360,491)(361,490)(362,489)(363,488)(364,487)(365,486)(366,485)(367,484)
(368,483)(369,482)(370,481)(371,480)(372,479)(373,478)(374,477)(375,476)
(376,475)(377,474)(378,473)(379,472)(380,471)(381,470)(382,469)(383,468)
(384,467)(385,466)(386,465)(387,464)(388,463)(389,462)(390,461)(391,460)
(392,459)(393,458)(394,457)(395,456)(396,455)(397,454)(398,453)(399,452)
(400,451)(401,450)(402,449)(403,448)(404,447)(405,446)(406,445)(407,444)
(408,443)(409,442)(410,441)(411,440)(412,439)(413,438)(414,437)(415,436)
(416,435)(417,434)(418,433)(419,432)(420,431)(421,430)(422,429)(423,428)
(424,427)(425,426);;
s1 := ( 1,285)( 2,284)( 3,566)( 4,565)( 5,564)( 6,563)( 7,562)( 8,561)
( 9,560)( 10,559)( 11,558)( 12,557)( 13,556)( 14,555)( 15,554)( 16,553)
( 17,552)( 18,551)( 19,550)( 20,549)( 21,548)( 22,547)( 23,546)( 24,545)
( 25,544)( 26,543)( 27,542)( 28,541)( 29,540)( 30,539)( 31,538)( 32,537)
( 33,536)( 34,535)( 35,534)( 36,533)( 37,532)( 38,531)( 39,530)( 40,529)
( 41,528)( 42,527)( 43,526)( 44,525)( 45,524)( 46,523)( 47,522)( 48,521)
( 49,520)( 50,519)( 51,518)( 52,517)( 53,516)( 54,515)( 55,514)( 56,513)
( 57,512)( 58,511)( 59,510)( 60,509)( 61,508)( 62,507)( 63,506)( 64,505)
( 65,504)( 66,503)( 67,502)( 68,501)( 69,500)( 70,499)( 71,498)( 72,497)
( 73,496)( 74,495)( 75,494)( 76,493)( 77,492)( 78,491)( 79,490)( 80,489)
( 81,488)( 82,487)( 83,486)( 84,485)( 85,484)( 86,483)( 87,482)( 88,481)
( 89,480)( 90,479)( 91,478)( 92,477)( 93,476)( 94,475)( 95,474)( 96,473)
( 97,472)( 98,471)( 99,470)(100,469)(101,468)(102,467)(103,466)(104,465)
(105,464)(106,463)(107,462)(108,461)(109,460)(110,459)(111,458)(112,457)
(113,456)(114,455)(115,454)(116,453)(117,452)(118,451)(119,450)(120,449)
(121,448)(122,447)(123,446)(124,445)(125,444)(126,443)(127,442)(128,441)
(129,440)(130,439)(131,438)(132,437)(133,436)(134,435)(135,434)(136,433)
(137,432)(138,431)(139,430)(140,429)(141,428)(142,427)(143,426)(144,425)
(145,424)(146,423)(147,422)(148,421)(149,420)(150,419)(151,418)(152,417)
(153,416)(154,415)(155,414)(156,413)(157,412)(158,411)(159,410)(160,409)
(161,408)(162,407)(163,406)(164,405)(165,404)(166,403)(167,402)(168,401)
(169,400)(170,399)(171,398)(172,397)(173,396)(174,395)(175,394)(176,393)
(177,392)(178,391)(179,390)(180,389)(181,388)(182,387)(183,386)(184,385)
(185,384)(186,383)(187,382)(188,381)(189,380)(190,379)(191,378)(192,377)
(193,376)(194,375)(195,374)(196,373)(197,372)(198,371)(199,370)(200,369)
(201,368)(202,367)(203,366)(204,365)(205,364)(206,363)(207,362)(208,361)
(209,360)(210,359)(211,358)(212,357)(213,356)(214,355)(215,354)(216,353)
(217,352)(218,351)(219,350)(220,349)(221,348)(222,347)(223,346)(224,345)
(225,344)(226,343)(227,342)(228,341)(229,340)(230,339)(231,338)(232,337)
(233,336)(234,335)(235,334)(236,333)(237,332)(238,331)(239,330)(240,329)
(241,328)(242,327)(243,326)(244,325)(245,324)(246,323)(247,322)(248,321)
(249,320)(250,319)(251,318)(252,317)(253,316)(254,315)(255,314)(256,313)
(257,312)(258,311)(259,310)(260,309)(261,308)(262,307)(263,306)(264,305)
(265,304)(266,303)(267,302)(268,301)(269,300)(270,299)(271,298)(272,297)
(273,296)(274,295)(275,294)(276,293)(277,292)(278,291)(279,290)(280,289)
(281,288)(282,287)(283,286);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(566)!( 2,283)( 3,282)( 4,281)( 5,280)( 6,279)( 7,278)( 8,277)
( 9,276)( 10,275)( 11,274)( 12,273)( 13,272)( 14,271)( 15,270)( 16,269)
( 17,268)( 18,267)( 19,266)( 20,265)( 21,264)( 22,263)( 23,262)( 24,261)
( 25,260)( 26,259)( 27,258)( 28,257)( 29,256)( 30,255)( 31,254)( 32,253)
( 33,252)( 34,251)( 35,250)( 36,249)( 37,248)( 38,247)( 39,246)( 40,245)
( 41,244)( 42,243)( 43,242)( 44,241)( 45,240)( 46,239)( 47,238)( 48,237)
( 49,236)( 50,235)( 51,234)( 52,233)( 53,232)( 54,231)( 55,230)( 56,229)
( 57,228)( 58,227)( 59,226)( 60,225)( 61,224)( 62,223)( 63,222)( 64,221)
( 65,220)( 66,219)( 67,218)( 68,217)( 69,216)( 70,215)( 71,214)( 72,213)
( 73,212)( 74,211)( 75,210)( 76,209)( 77,208)( 78,207)( 79,206)( 80,205)
( 81,204)( 82,203)( 83,202)( 84,201)( 85,200)( 86,199)( 87,198)( 88,197)
( 89,196)( 90,195)( 91,194)( 92,193)( 93,192)( 94,191)( 95,190)( 96,189)
( 97,188)( 98,187)( 99,186)(100,185)(101,184)(102,183)(103,182)(104,181)
(105,180)(106,179)(107,178)(108,177)(109,176)(110,175)(111,174)(112,173)
(113,172)(114,171)(115,170)(116,169)(117,168)(118,167)(119,166)(120,165)
(121,164)(122,163)(123,162)(124,161)(125,160)(126,159)(127,158)(128,157)
(129,156)(130,155)(131,154)(132,153)(133,152)(134,151)(135,150)(136,149)
(137,148)(138,147)(139,146)(140,145)(141,144)(142,143)(285,566)(286,565)
(287,564)(288,563)(289,562)(290,561)(291,560)(292,559)(293,558)(294,557)
(295,556)(296,555)(297,554)(298,553)(299,552)(300,551)(301,550)(302,549)
(303,548)(304,547)(305,546)(306,545)(307,544)(308,543)(309,542)(310,541)
(311,540)(312,539)(313,538)(314,537)(315,536)(316,535)(317,534)(318,533)
(319,532)(320,531)(321,530)(322,529)(323,528)(324,527)(325,526)(326,525)
(327,524)(328,523)(329,522)(330,521)(331,520)(332,519)(333,518)(334,517)
(335,516)(336,515)(337,514)(338,513)(339,512)(340,511)(341,510)(342,509)
(343,508)(344,507)(345,506)(346,505)(347,504)(348,503)(349,502)(350,501)
(351,500)(352,499)(353,498)(354,497)(355,496)(356,495)(357,494)(358,493)
(359,492)(360,491)(361,490)(362,489)(363,488)(364,487)(365,486)(366,485)
(367,484)(368,483)(369,482)(370,481)(371,480)(372,479)(373,478)(374,477)
(375,476)(376,475)(377,474)(378,473)(379,472)(380,471)(381,470)(382,469)
(383,468)(384,467)(385,466)(386,465)(387,464)(388,463)(389,462)(390,461)
(391,460)(392,459)(393,458)(394,457)(395,456)(396,455)(397,454)(398,453)
(399,452)(400,451)(401,450)(402,449)(403,448)(404,447)(405,446)(406,445)
(407,444)(408,443)(409,442)(410,441)(411,440)(412,439)(413,438)(414,437)
(415,436)(416,435)(417,434)(418,433)(419,432)(420,431)(421,430)(422,429)
(423,428)(424,427)(425,426);
s1 := Sym(566)!( 1,285)( 2,284)( 3,566)( 4,565)( 5,564)( 6,563)( 7,562)
( 8,561)( 9,560)( 10,559)( 11,558)( 12,557)( 13,556)( 14,555)( 15,554)
( 16,553)( 17,552)( 18,551)( 19,550)( 20,549)( 21,548)( 22,547)( 23,546)
( 24,545)( 25,544)( 26,543)( 27,542)( 28,541)( 29,540)( 30,539)( 31,538)
( 32,537)( 33,536)( 34,535)( 35,534)( 36,533)( 37,532)( 38,531)( 39,530)
( 40,529)( 41,528)( 42,527)( 43,526)( 44,525)( 45,524)( 46,523)( 47,522)
( 48,521)( 49,520)( 50,519)( 51,518)( 52,517)( 53,516)( 54,515)( 55,514)
( 56,513)( 57,512)( 58,511)( 59,510)( 60,509)( 61,508)( 62,507)( 63,506)
( 64,505)( 65,504)( 66,503)( 67,502)( 68,501)( 69,500)( 70,499)( 71,498)
( 72,497)( 73,496)( 74,495)( 75,494)( 76,493)( 77,492)( 78,491)( 79,490)
( 80,489)( 81,488)( 82,487)( 83,486)( 84,485)( 85,484)( 86,483)( 87,482)
( 88,481)( 89,480)( 90,479)( 91,478)( 92,477)( 93,476)( 94,475)( 95,474)
( 96,473)( 97,472)( 98,471)( 99,470)(100,469)(101,468)(102,467)(103,466)
(104,465)(105,464)(106,463)(107,462)(108,461)(109,460)(110,459)(111,458)
(112,457)(113,456)(114,455)(115,454)(116,453)(117,452)(118,451)(119,450)
(120,449)(121,448)(122,447)(123,446)(124,445)(125,444)(126,443)(127,442)
(128,441)(129,440)(130,439)(131,438)(132,437)(133,436)(134,435)(135,434)
(136,433)(137,432)(138,431)(139,430)(140,429)(141,428)(142,427)(143,426)
(144,425)(145,424)(146,423)(147,422)(148,421)(149,420)(150,419)(151,418)
(152,417)(153,416)(154,415)(155,414)(156,413)(157,412)(158,411)(159,410)
(160,409)(161,408)(162,407)(163,406)(164,405)(165,404)(166,403)(167,402)
(168,401)(169,400)(170,399)(171,398)(172,397)(173,396)(174,395)(175,394)
(176,393)(177,392)(178,391)(179,390)(180,389)(181,388)(182,387)(183,386)
(184,385)(185,384)(186,383)(187,382)(188,381)(189,380)(190,379)(191,378)
(192,377)(193,376)(194,375)(195,374)(196,373)(197,372)(198,371)(199,370)
(200,369)(201,368)(202,367)(203,366)(204,365)(205,364)(206,363)(207,362)
(208,361)(209,360)(210,359)(211,358)(212,357)(213,356)(214,355)(215,354)
(216,353)(217,352)(218,351)(219,350)(220,349)(221,348)(222,347)(223,346)
(224,345)(225,344)(226,343)(227,342)(228,341)(229,340)(230,339)(231,338)
(232,337)(233,336)(234,335)(235,334)(236,333)(237,332)(238,331)(239,330)
(240,329)(241,328)(242,327)(243,326)(244,325)(245,324)(246,323)(247,322)
(248,321)(249,320)(250,319)(251,318)(252,317)(253,316)(254,315)(255,314)
(256,313)(257,312)(258,311)(259,310)(260,309)(261,308)(262,307)(263,306)
(264,305)(265,304)(266,303)(267,302)(268,301)(269,300)(270,299)(271,298)
(272,297)(273,296)(274,295)(275,294)(276,293)(277,292)(278,291)(279,290)
(280,289)(281,288)(282,287)(283,286);
poly := sub<Sym(566)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope