include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {568}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {568}*1136
Also Known As : 568-gon, {568}. if this polytope has another name.
Group : SmallGroup(1136,26)
Rank : 2
Schlafli Type : {568}
Number of vertices, edges, etc : 568, 568
Order of s0s1 : 568
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {284}*568
4-fold quotients : {142}*284
8-fold quotients : {71}*142
71-fold quotients : {8}*16
142-fold quotients : {4}*8
284-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 71)( 3, 70)( 4, 69)( 5, 68)( 6, 67)( 7, 66)( 8, 65)( 9, 64)
( 10, 63)( 11, 62)( 12, 61)( 13, 60)( 14, 59)( 15, 58)( 16, 57)( 17, 56)
( 18, 55)( 19, 54)( 20, 53)( 21, 52)( 22, 51)( 23, 50)( 24, 49)( 25, 48)
( 26, 47)( 27, 46)( 28, 45)( 29, 44)( 30, 43)( 31, 42)( 32, 41)( 33, 40)
( 34, 39)( 35, 38)( 36, 37)( 73,142)( 74,141)( 75,140)( 76,139)( 77,138)
( 78,137)( 79,136)( 80,135)( 81,134)( 82,133)( 83,132)( 84,131)( 85,130)
( 86,129)( 87,128)( 88,127)( 89,126)( 90,125)( 91,124)( 92,123)( 93,122)
( 94,121)( 95,120)( 96,119)( 97,118)( 98,117)( 99,116)(100,115)(101,114)
(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)(143,214)(144,284)
(145,283)(146,282)(147,281)(148,280)(149,279)(150,278)(151,277)(152,276)
(153,275)(154,274)(155,273)(156,272)(157,271)(158,270)(159,269)(160,268)
(161,267)(162,266)(163,265)(164,264)(165,263)(166,262)(167,261)(168,260)
(169,259)(170,258)(171,257)(172,256)(173,255)(174,254)(175,253)(176,252)
(177,251)(178,250)(179,249)(180,248)(181,247)(182,246)(183,245)(184,244)
(185,243)(186,242)(187,241)(188,240)(189,239)(190,238)(191,237)(192,236)
(193,235)(194,234)(195,233)(196,232)(197,231)(198,230)(199,229)(200,228)
(201,227)(202,226)(203,225)(204,224)(205,223)(206,222)(207,221)(208,220)
(209,219)(210,218)(211,217)(212,216)(213,215)(285,427)(286,497)(287,496)
(288,495)(289,494)(290,493)(291,492)(292,491)(293,490)(294,489)(295,488)
(296,487)(297,486)(298,485)(299,484)(300,483)(301,482)(302,481)(303,480)
(304,479)(305,478)(306,477)(307,476)(308,475)(309,474)(310,473)(311,472)
(312,471)(313,470)(314,469)(315,468)(316,467)(317,466)(318,465)(319,464)
(320,463)(321,462)(322,461)(323,460)(324,459)(325,458)(326,457)(327,456)
(328,455)(329,454)(330,453)(331,452)(332,451)(333,450)(334,449)(335,448)
(336,447)(337,446)(338,445)(339,444)(340,443)(341,442)(342,441)(343,440)
(344,439)(345,438)(346,437)(347,436)(348,435)(349,434)(350,433)(351,432)
(352,431)(353,430)(354,429)(355,428)(356,498)(357,568)(358,567)(359,566)
(360,565)(361,564)(362,563)(363,562)(364,561)(365,560)(366,559)(367,558)
(368,557)(369,556)(370,555)(371,554)(372,553)(373,552)(374,551)(375,550)
(376,549)(377,548)(378,547)(379,546)(380,545)(381,544)(382,543)(383,542)
(384,541)(385,540)(386,539)(387,538)(388,537)(389,536)(390,535)(391,534)
(392,533)(393,532)(394,531)(395,530)(396,529)(397,528)(398,527)(399,526)
(400,525)(401,524)(402,523)(403,522)(404,521)(405,520)(406,519)(407,518)
(408,517)(409,516)(410,515)(411,514)(412,513)(413,512)(414,511)(415,510)
(416,509)(417,508)(418,507)(419,506)(420,505)(421,504)(422,503)(423,502)
(424,501)(425,500)(426,499);;
s1 := ( 1,286)( 2,285)( 3,355)( 4,354)( 5,353)( 6,352)( 7,351)( 8,350)
( 9,349)( 10,348)( 11,347)( 12,346)( 13,345)( 14,344)( 15,343)( 16,342)
( 17,341)( 18,340)( 19,339)( 20,338)( 21,337)( 22,336)( 23,335)( 24,334)
( 25,333)( 26,332)( 27,331)( 28,330)( 29,329)( 30,328)( 31,327)( 32,326)
( 33,325)( 34,324)( 35,323)( 36,322)( 37,321)( 38,320)( 39,319)( 40,318)
( 41,317)( 42,316)( 43,315)( 44,314)( 45,313)( 46,312)( 47,311)( 48,310)
( 49,309)( 50,308)( 51,307)( 52,306)( 53,305)( 54,304)( 55,303)( 56,302)
( 57,301)( 58,300)( 59,299)( 60,298)( 61,297)( 62,296)( 63,295)( 64,294)
( 65,293)( 66,292)( 67,291)( 68,290)( 69,289)( 70,288)( 71,287)( 72,357)
( 73,356)( 74,426)( 75,425)( 76,424)( 77,423)( 78,422)( 79,421)( 80,420)
( 81,419)( 82,418)( 83,417)( 84,416)( 85,415)( 86,414)( 87,413)( 88,412)
( 89,411)( 90,410)( 91,409)( 92,408)( 93,407)( 94,406)( 95,405)( 96,404)
( 97,403)( 98,402)( 99,401)(100,400)(101,399)(102,398)(103,397)(104,396)
(105,395)(106,394)(107,393)(108,392)(109,391)(110,390)(111,389)(112,388)
(113,387)(114,386)(115,385)(116,384)(117,383)(118,382)(119,381)(120,380)
(121,379)(122,378)(123,377)(124,376)(125,375)(126,374)(127,373)(128,372)
(129,371)(130,370)(131,369)(132,368)(133,367)(134,366)(135,365)(136,364)
(137,363)(138,362)(139,361)(140,360)(141,359)(142,358)(143,499)(144,498)
(145,568)(146,567)(147,566)(148,565)(149,564)(150,563)(151,562)(152,561)
(153,560)(154,559)(155,558)(156,557)(157,556)(158,555)(159,554)(160,553)
(161,552)(162,551)(163,550)(164,549)(165,548)(166,547)(167,546)(168,545)
(169,544)(170,543)(171,542)(172,541)(173,540)(174,539)(175,538)(176,537)
(177,536)(178,535)(179,534)(180,533)(181,532)(182,531)(183,530)(184,529)
(185,528)(186,527)(187,526)(188,525)(189,524)(190,523)(191,522)(192,521)
(193,520)(194,519)(195,518)(196,517)(197,516)(198,515)(199,514)(200,513)
(201,512)(202,511)(203,510)(204,509)(205,508)(206,507)(207,506)(208,505)
(209,504)(210,503)(211,502)(212,501)(213,500)(214,428)(215,427)(216,497)
(217,496)(218,495)(219,494)(220,493)(221,492)(222,491)(223,490)(224,489)
(225,488)(226,487)(227,486)(228,485)(229,484)(230,483)(231,482)(232,481)
(233,480)(234,479)(235,478)(236,477)(237,476)(238,475)(239,474)(240,473)
(241,472)(242,471)(243,470)(244,469)(245,468)(246,467)(247,466)(248,465)
(249,464)(250,463)(251,462)(252,461)(253,460)(254,459)(255,458)(256,457)
(257,456)(258,455)(259,454)(260,453)(261,452)(262,451)(263,450)(264,449)
(265,448)(266,447)(267,446)(268,445)(269,444)(270,443)(271,442)(272,441)
(273,440)(274,439)(275,438)(276,437)(277,436)(278,435)(279,434)(280,433)
(281,432)(282,431)(283,430)(284,429);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(568)!( 2, 71)( 3, 70)( 4, 69)( 5, 68)( 6, 67)( 7, 66)( 8, 65)
( 9, 64)( 10, 63)( 11, 62)( 12, 61)( 13, 60)( 14, 59)( 15, 58)( 16, 57)
( 17, 56)( 18, 55)( 19, 54)( 20, 53)( 21, 52)( 22, 51)( 23, 50)( 24, 49)
( 25, 48)( 26, 47)( 27, 46)( 28, 45)( 29, 44)( 30, 43)( 31, 42)( 32, 41)
( 33, 40)( 34, 39)( 35, 38)( 36, 37)( 73,142)( 74,141)( 75,140)( 76,139)
( 77,138)( 78,137)( 79,136)( 80,135)( 81,134)( 82,133)( 83,132)( 84,131)
( 85,130)( 86,129)( 87,128)( 88,127)( 89,126)( 90,125)( 91,124)( 92,123)
( 93,122)( 94,121)( 95,120)( 96,119)( 97,118)( 98,117)( 99,116)(100,115)
(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)(143,214)
(144,284)(145,283)(146,282)(147,281)(148,280)(149,279)(150,278)(151,277)
(152,276)(153,275)(154,274)(155,273)(156,272)(157,271)(158,270)(159,269)
(160,268)(161,267)(162,266)(163,265)(164,264)(165,263)(166,262)(167,261)
(168,260)(169,259)(170,258)(171,257)(172,256)(173,255)(174,254)(175,253)
(176,252)(177,251)(178,250)(179,249)(180,248)(181,247)(182,246)(183,245)
(184,244)(185,243)(186,242)(187,241)(188,240)(189,239)(190,238)(191,237)
(192,236)(193,235)(194,234)(195,233)(196,232)(197,231)(198,230)(199,229)
(200,228)(201,227)(202,226)(203,225)(204,224)(205,223)(206,222)(207,221)
(208,220)(209,219)(210,218)(211,217)(212,216)(213,215)(285,427)(286,497)
(287,496)(288,495)(289,494)(290,493)(291,492)(292,491)(293,490)(294,489)
(295,488)(296,487)(297,486)(298,485)(299,484)(300,483)(301,482)(302,481)
(303,480)(304,479)(305,478)(306,477)(307,476)(308,475)(309,474)(310,473)
(311,472)(312,471)(313,470)(314,469)(315,468)(316,467)(317,466)(318,465)
(319,464)(320,463)(321,462)(322,461)(323,460)(324,459)(325,458)(326,457)
(327,456)(328,455)(329,454)(330,453)(331,452)(332,451)(333,450)(334,449)
(335,448)(336,447)(337,446)(338,445)(339,444)(340,443)(341,442)(342,441)
(343,440)(344,439)(345,438)(346,437)(347,436)(348,435)(349,434)(350,433)
(351,432)(352,431)(353,430)(354,429)(355,428)(356,498)(357,568)(358,567)
(359,566)(360,565)(361,564)(362,563)(363,562)(364,561)(365,560)(366,559)
(367,558)(368,557)(369,556)(370,555)(371,554)(372,553)(373,552)(374,551)
(375,550)(376,549)(377,548)(378,547)(379,546)(380,545)(381,544)(382,543)
(383,542)(384,541)(385,540)(386,539)(387,538)(388,537)(389,536)(390,535)
(391,534)(392,533)(393,532)(394,531)(395,530)(396,529)(397,528)(398,527)
(399,526)(400,525)(401,524)(402,523)(403,522)(404,521)(405,520)(406,519)
(407,518)(408,517)(409,516)(410,515)(411,514)(412,513)(413,512)(414,511)
(415,510)(416,509)(417,508)(418,507)(419,506)(420,505)(421,504)(422,503)
(423,502)(424,501)(425,500)(426,499);
s1 := Sym(568)!( 1,286)( 2,285)( 3,355)( 4,354)( 5,353)( 6,352)( 7,351)
( 8,350)( 9,349)( 10,348)( 11,347)( 12,346)( 13,345)( 14,344)( 15,343)
( 16,342)( 17,341)( 18,340)( 19,339)( 20,338)( 21,337)( 22,336)( 23,335)
( 24,334)( 25,333)( 26,332)( 27,331)( 28,330)( 29,329)( 30,328)( 31,327)
( 32,326)( 33,325)( 34,324)( 35,323)( 36,322)( 37,321)( 38,320)( 39,319)
( 40,318)( 41,317)( 42,316)( 43,315)( 44,314)( 45,313)( 46,312)( 47,311)
( 48,310)( 49,309)( 50,308)( 51,307)( 52,306)( 53,305)( 54,304)( 55,303)
( 56,302)( 57,301)( 58,300)( 59,299)( 60,298)( 61,297)( 62,296)( 63,295)
( 64,294)( 65,293)( 66,292)( 67,291)( 68,290)( 69,289)( 70,288)( 71,287)
( 72,357)( 73,356)( 74,426)( 75,425)( 76,424)( 77,423)( 78,422)( 79,421)
( 80,420)( 81,419)( 82,418)( 83,417)( 84,416)( 85,415)( 86,414)( 87,413)
( 88,412)( 89,411)( 90,410)( 91,409)( 92,408)( 93,407)( 94,406)( 95,405)
( 96,404)( 97,403)( 98,402)( 99,401)(100,400)(101,399)(102,398)(103,397)
(104,396)(105,395)(106,394)(107,393)(108,392)(109,391)(110,390)(111,389)
(112,388)(113,387)(114,386)(115,385)(116,384)(117,383)(118,382)(119,381)
(120,380)(121,379)(122,378)(123,377)(124,376)(125,375)(126,374)(127,373)
(128,372)(129,371)(130,370)(131,369)(132,368)(133,367)(134,366)(135,365)
(136,364)(137,363)(138,362)(139,361)(140,360)(141,359)(142,358)(143,499)
(144,498)(145,568)(146,567)(147,566)(148,565)(149,564)(150,563)(151,562)
(152,561)(153,560)(154,559)(155,558)(156,557)(157,556)(158,555)(159,554)
(160,553)(161,552)(162,551)(163,550)(164,549)(165,548)(166,547)(167,546)
(168,545)(169,544)(170,543)(171,542)(172,541)(173,540)(174,539)(175,538)
(176,537)(177,536)(178,535)(179,534)(180,533)(181,532)(182,531)(183,530)
(184,529)(185,528)(186,527)(187,526)(188,525)(189,524)(190,523)(191,522)
(192,521)(193,520)(194,519)(195,518)(196,517)(197,516)(198,515)(199,514)
(200,513)(201,512)(202,511)(203,510)(204,509)(205,508)(206,507)(207,506)
(208,505)(209,504)(210,503)(211,502)(212,501)(213,500)(214,428)(215,427)
(216,497)(217,496)(218,495)(219,494)(220,493)(221,492)(222,491)(223,490)
(224,489)(225,488)(226,487)(227,486)(228,485)(229,484)(230,483)(231,482)
(232,481)(233,480)(234,479)(235,478)(236,477)(237,476)(238,475)(239,474)
(240,473)(241,472)(242,471)(243,470)(244,469)(245,468)(246,467)(247,466)
(248,465)(249,464)(250,463)(251,462)(252,461)(253,460)(254,459)(255,458)
(256,457)(257,456)(258,455)(259,454)(260,453)(261,452)(262,451)(263,450)
(264,449)(265,448)(266,447)(267,446)(268,445)(269,444)(270,443)(271,442)
(272,441)(273,440)(274,439)(275,438)(276,437)(277,436)(278,435)(279,434)
(280,433)(281,432)(282,431)(283,430)(284,429);
poly := sub<Sym(568)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope