include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {72,2,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {72,2,4}*1152
if this polytope has a name.
Group : SmallGroup(1152,119746)
Rank : 4
Schlafli Type : {72,2,4}
Number of vertices, edges, etc : 72, 72, 4, 4
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {36,2,4}*576, {72,2,2}*576
3-fold quotients : {24,2,4}*384
4-fold quotients : {36,2,2}*288, {18,2,4}*288
6-fold quotients : {12,2,4}*192, {24,2,2}*192
8-fold quotients : {9,2,4}*144, {18,2,2}*144
9-fold quotients : {8,2,4}*128
12-fold quotients : {12,2,2}*96, {6,2,4}*96
16-fold quotients : {9,2,2}*72
18-fold quotients : {4,2,4}*64, {8,2,2}*64
24-fold quotients : {3,2,4}*48, {6,2,2}*48
36-fold quotients : {2,2,4}*32, {4,2,2}*32
48-fold quotients : {3,2,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 8)( 5, 7)( 6, 9)(11,12)(13,17)(14,16)(15,18)(19,28)(20,30)
(21,29)(22,35)(23,34)(24,36)(25,32)(26,31)(27,33)(37,55)(38,57)(39,56)(40,62)
(41,61)(42,63)(43,59)(44,58)(45,60)(46,64)(47,66)(48,65)(49,71)(50,70)(51,72)
(52,68)(53,67)(54,69);;
s1 := ( 1,40)( 2,42)( 3,41)( 4,37)( 5,39)( 6,38)( 7,44)( 8,43)( 9,45)(10,49)
(11,51)(12,50)(13,46)(14,48)(15,47)(16,53)(17,52)(18,54)(19,67)(20,69)(21,68)
(22,64)(23,66)(24,65)(25,71)(26,70)(27,72)(28,58)(29,60)(30,59)(31,55)(32,57)
(33,56)(34,62)(35,61)(36,63);;
s2 := (74,75);;
s3 := (73,74)(75,76);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(76)!( 2, 3)( 4, 8)( 5, 7)( 6, 9)(11,12)(13,17)(14,16)(15,18)(19,28)
(20,30)(21,29)(22,35)(23,34)(24,36)(25,32)(26,31)(27,33)(37,55)(38,57)(39,56)
(40,62)(41,61)(42,63)(43,59)(44,58)(45,60)(46,64)(47,66)(48,65)(49,71)(50,70)
(51,72)(52,68)(53,67)(54,69);
s1 := Sym(76)!( 1,40)( 2,42)( 3,41)( 4,37)( 5,39)( 6,38)( 7,44)( 8,43)( 9,45)
(10,49)(11,51)(12,50)(13,46)(14,48)(15,47)(16,53)(17,52)(18,54)(19,67)(20,69)
(21,68)(22,64)(23,66)(24,65)(25,71)(26,70)(27,72)(28,58)(29,60)(30,59)(31,55)
(32,57)(33,56)(34,62)(35,61)(36,63);
s2 := Sym(76)!(74,75);
s3 := Sym(76)!(73,74)(75,76);
poly := sub<Sym(76)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope