include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,24}*1152g
if this polytope has a name.
Group : SmallGroup(1152,12917)
Rank : 3
Schlafli Type : {24,24}
Number of vertices, edges, etc : 24, 288, 24
Order of s0s1s2 : 24
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {24,12}*576c, {12,24}*576e
3-fold quotients : {24,8}*384a, {8,24}*384d
4-fold quotients : {24,6}*288a, {12,12}*288a
6-fold quotients : {24,4}*192a, {4,24}*192b, {8,12}*192a, {12,8}*192b
8-fold quotients : {6,12}*144a, {12,6}*144a
9-fold quotients : {8,8}*128c
12-fold quotients : {4,12}*96a, {12,4}*96a, {24,2}*96, {8,6}*96
16-fold quotients : {6,6}*72a
18-fold quotients : {8,4}*64a, {4,8}*64b
24-fold quotients : {2,12}*48, {12,2}*48, {4,6}*48a, {6,4}*48a
36-fold quotients : {4,4}*32, {8,2}*32
48-fold quotients : {2,6}*24, {6,2}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,3}*12, {3,2}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,289)( 2,294)( 3,296)( 4,292)( 5,297)( 6,290)( 7,295)( 8,291)
( 9,293)( 10,298)( 11,303)( 12,305)( 13,301)( 14,306)( 15,299)( 16,304)
( 17,300)( 18,302)( 19,307)( 20,312)( 21,314)( 22,310)( 23,315)( 24,308)
( 25,313)( 26,309)( 27,311)( 28,316)( 29,321)( 30,323)( 31,319)( 32,324)
( 33,317)( 34,322)( 35,318)( 36,320)( 37,334)( 38,339)( 39,341)( 40,337)
( 41,342)( 42,335)( 43,340)( 44,336)( 45,338)( 46,325)( 47,330)( 48,332)
( 49,328)( 50,333)( 51,326)( 52,331)( 53,327)( 54,329)( 55,352)( 56,357)
( 57,359)( 58,355)( 59,360)( 60,353)( 61,358)( 62,354)( 63,356)( 64,343)
( 65,348)( 66,350)( 67,346)( 68,351)( 69,344)( 70,349)( 71,345)( 72,347)
( 73,379)( 74,384)( 75,386)( 76,382)( 77,387)( 78,380)( 79,385)( 80,381)
( 81,383)( 82,388)( 83,393)( 84,395)( 85,391)( 86,396)( 87,389)( 88,394)
( 89,390)( 90,392)( 91,361)( 92,366)( 93,368)( 94,364)( 95,369)( 96,362)
( 97,367)( 98,363)( 99,365)(100,370)(101,375)(102,377)(103,373)(104,378)
(105,371)(106,376)(107,372)(108,374)(109,424)(110,429)(111,431)(112,427)
(113,432)(114,425)(115,430)(116,426)(117,428)(118,415)(119,420)(120,422)
(121,418)(122,423)(123,416)(124,421)(125,417)(126,419)(127,406)(128,411)
(129,413)(130,409)(131,414)(132,407)(133,412)(134,408)(135,410)(136,397)
(137,402)(138,404)(139,400)(140,405)(141,398)(142,403)(143,399)(144,401)
(145,433)(146,438)(147,440)(148,436)(149,441)(150,434)(151,439)(152,435)
(153,437)(154,442)(155,447)(156,449)(157,445)(158,450)(159,443)(160,448)
(161,444)(162,446)(163,451)(164,456)(165,458)(166,454)(167,459)(168,452)
(169,457)(170,453)(171,455)(172,460)(173,465)(174,467)(175,463)(176,468)
(177,461)(178,466)(179,462)(180,464)(181,478)(182,483)(183,485)(184,481)
(185,486)(186,479)(187,484)(188,480)(189,482)(190,469)(191,474)(192,476)
(193,472)(194,477)(195,470)(196,475)(197,471)(198,473)(199,496)(200,501)
(201,503)(202,499)(203,504)(204,497)(205,502)(206,498)(207,500)(208,487)
(209,492)(210,494)(211,490)(212,495)(213,488)(214,493)(215,489)(216,491)
(217,523)(218,528)(219,530)(220,526)(221,531)(222,524)(223,529)(224,525)
(225,527)(226,532)(227,537)(228,539)(229,535)(230,540)(231,533)(232,538)
(233,534)(234,536)(235,505)(236,510)(237,512)(238,508)(239,513)(240,506)
(241,511)(242,507)(243,509)(244,514)(245,519)(246,521)(247,517)(248,522)
(249,515)(250,520)(251,516)(252,518)(253,568)(254,573)(255,575)(256,571)
(257,576)(258,569)(259,574)(260,570)(261,572)(262,559)(263,564)(264,566)
(265,562)(266,567)(267,560)(268,565)(269,561)(270,563)(271,550)(272,555)
(273,557)(274,553)(275,558)(276,551)(277,556)(278,552)(279,554)(280,541)
(281,546)(282,548)(283,544)(284,549)(285,542)(286,547)(287,543)(288,545);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)( 33, 36)
( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)( 44, 49)
( 45, 51)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)( 61, 68)
( 62, 67)( 63, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)( 78, 99)
( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)( 86,106)
( 87,108)( 88,104)( 89,103)( 90,105)(109,137)(110,136)(111,138)(112,143)
(113,142)(114,144)(115,140)(116,139)(117,141)(118,128)(119,127)(120,129)
(121,134)(122,133)(123,135)(124,131)(125,130)(126,132)(145,182)(146,181)
(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)(154,191)
(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)(162,195)
(163,200)(164,199)(165,201)(166,206)(167,205)(168,207)(169,203)(170,202)
(171,204)(172,209)(173,208)(174,210)(175,215)(176,214)(177,216)(178,212)
(179,211)(180,213)(217,272)(218,271)(219,273)(220,278)(221,277)(222,279)
(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)(230,286)
(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)(238,260)
(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)(246,264)
(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)(290,361)
(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)(298,371)
(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)(306,375)
(307,380)(308,379)(309,381)(310,386)(311,385)(312,387)(313,383)(314,382)
(315,384)(316,389)(317,388)(318,390)(319,395)(320,394)(321,396)(322,392)
(323,391)(324,393)(325,407)(326,406)(327,408)(328,413)(329,412)(330,414)
(331,410)(332,409)(333,411)(334,398)(335,397)(336,399)(337,404)(338,403)
(339,405)(340,401)(341,400)(342,402)(343,425)(344,424)(345,426)(346,431)
(347,430)(348,432)(349,428)(350,427)(351,429)(352,416)(353,415)(354,417)
(355,422)(356,421)(357,423)(358,419)(359,418)(360,420)(433,551)(434,550)
(435,552)(436,557)(437,556)(438,558)(439,554)(440,553)(441,555)(442,542)
(443,541)(444,543)(445,548)(446,547)(447,549)(448,545)(449,544)(450,546)
(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)(458,571)
(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)(466,563)
(467,562)(468,564)(469,515)(470,514)(471,516)(472,521)(473,520)(474,522)
(475,518)(476,517)(477,519)(478,506)(479,505)(480,507)(481,512)(482,511)
(483,513)(484,509)(485,508)(486,510)(487,533)(488,532)(489,534)(490,539)
(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)(498,525)
(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);;
s2 := ( 1,433)( 2,440)( 3,438)( 4,439)( 5,437)( 6,435)( 7,436)( 8,434)
( 9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)( 16,445)
( 17,443)( 18,450)( 19,451)( 20,458)( 21,456)( 22,457)( 23,455)( 24,453)
( 25,454)( 26,452)( 27,459)( 28,460)( 29,467)( 30,465)( 31,466)( 32,464)
( 33,462)( 34,463)( 35,461)( 36,468)( 37,469)( 38,476)( 39,474)( 40,475)
( 41,473)( 42,471)( 43,472)( 44,470)( 45,477)( 46,478)( 47,485)( 48,483)
( 49,484)( 50,482)( 51,480)( 52,481)( 53,479)( 54,486)( 55,487)( 56,494)
( 57,492)( 58,493)( 59,491)( 60,489)( 61,490)( 62,488)( 63,495)( 64,496)
( 65,503)( 66,501)( 67,502)( 68,500)( 69,498)( 70,499)( 71,497)( 72,504)
( 73,532)( 74,539)( 75,537)( 76,538)( 77,536)( 78,534)( 79,535)( 80,533)
( 81,540)( 82,523)( 83,530)( 84,528)( 85,529)( 86,527)( 87,525)( 88,526)
( 89,524)( 90,531)( 91,514)( 92,521)( 93,519)( 94,520)( 95,518)( 96,516)
( 97,517)( 98,515)( 99,522)(100,505)(101,512)(102,510)(103,511)(104,509)
(105,507)(106,508)(107,506)(108,513)(109,568)(110,575)(111,573)(112,574)
(113,572)(114,570)(115,571)(116,569)(117,576)(118,559)(119,566)(120,564)
(121,565)(122,563)(123,561)(124,562)(125,560)(126,567)(127,550)(128,557)
(129,555)(130,556)(131,554)(132,552)(133,553)(134,551)(135,558)(136,541)
(137,548)(138,546)(139,547)(140,545)(141,543)(142,544)(143,542)(144,549)
(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)(152,290)
(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)(160,301)
(161,299)(162,306)(163,307)(164,314)(165,312)(166,313)(167,311)(168,309)
(169,310)(170,308)(171,315)(172,316)(173,323)(174,321)(175,322)(176,320)
(177,318)(178,319)(179,317)(180,324)(181,325)(182,332)(183,330)(184,331)
(185,329)(186,327)(187,328)(188,326)(189,333)(190,334)(191,341)(192,339)
(193,340)(194,338)(195,336)(196,337)(197,335)(198,342)(199,343)(200,350)
(201,348)(202,349)(203,347)(204,345)(205,346)(206,344)(207,351)(208,352)
(209,359)(210,357)(211,358)(212,356)(213,354)(214,355)(215,353)(216,360)
(217,388)(218,395)(219,393)(220,394)(221,392)(222,390)(223,391)(224,389)
(225,396)(226,379)(227,386)(228,384)(229,385)(230,383)(231,381)(232,382)
(233,380)(234,387)(235,370)(236,377)(237,375)(238,376)(239,374)(240,372)
(241,373)(242,371)(243,378)(244,361)(245,368)(246,366)(247,367)(248,365)
(249,363)(250,364)(251,362)(252,369)(253,424)(254,431)(255,429)(256,430)
(257,428)(258,426)(259,427)(260,425)(261,432)(262,415)(263,422)(264,420)
(265,421)(266,419)(267,417)(268,418)(269,416)(270,423)(271,406)(272,413)
(273,411)(274,412)(275,410)(276,408)(277,409)(278,407)(279,414)(280,397)
(281,404)(282,402)(283,403)(284,401)(285,399)(286,400)(287,398)(288,405);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,289)( 2,294)( 3,296)( 4,292)( 5,297)( 6,290)( 7,295)
( 8,291)( 9,293)( 10,298)( 11,303)( 12,305)( 13,301)( 14,306)( 15,299)
( 16,304)( 17,300)( 18,302)( 19,307)( 20,312)( 21,314)( 22,310)( 23,315)
( 24,308)( 25,313)( 26,309)( 27,311)( 28,316)( 29,321)( 30,323)( 31,319)
( 32,324)( 33,317)( 34,322)( 35,318)( 36,320)( 37,334)( 38,339)( 39,341)
( 40,337)( 41,342)( 42,335)( 43,340)( 44,336)( 45,338)( 46,325)( 47,330)
( 48,332)( 49,328)( 50,333)( 51,326)( 52,331)( 53,327)( 54,329)( 55,352)
( 56,357)( 57,359)( 58,355)( 59,360)( 60,353)( 61,358)( 62,354)( 63,356)
( 64,343)( 65,348)( 66,350)( 67,346)( 68,351)( 69,344)( 70,349)( 71,345)
( 72,347)( 73,379)( 74,384)( 75,386)( 76,382)( 77,387)( 78,380)( 79,385)
( 80,381)( 81,383)( 82,388)( 83,393)( 84,395)( 85,391)( 86,396)( 87,389)
( 88,394)( 89,390)( 90,392)( 91,361)( 92,366)( 93,368)( 94,364)( 95,369)
( 96,362)( 97,367)( 98,363)( 99,365)(100,370)(101,375)(102,377)(103,373)
(104,378)(105,371)(106,376)(107,372)(108,374)(109,424)(110,429)(111,431)
(112,427)(113,432)(114,425)(115,430)(116,426)(117,428)(118,415)(119,420)
(120,422)(121,418)(122,423)(123,416)(124,421)(125,417)(126,419)(127,406)
(128,411)(129,413)(130,409)(131,414)(132,407)(133,412)(134,408)(135,410)
(136,397)(137,402)(138,404)(139,400)(140,405)(141,398)(142,403)(143,399)
(144,401)(145,433)(146,438)(147,440)(148,436)(149,441)(150,434)(151,439)
(152,435)(153,437)(154,442)(155,447)(156,449)(157,445)(158,450)(159,443)
(160,448)(161,444)(162,446)(163,451)(164,456)(165,458)(166,454)(167,459)
(168,452)(169,457)(170,453)(171,455)(172,460)(173,465)(174,467)(175,463)
(176,468)(177,461)(178,466)(179,462)(180,464)(181,478)(182,483)(183,485)
(184,481)(185,486)(186,479)(187,484)(188,480)(189,482)(190,469)(191,474)
(192,476)(193,472)(194,477)(195,470)(196,475)(197,471)(198,473)(199,496)
(200,501)(201,503)(202,499)(203,504)(204,497)(205,502)(206,498)(207,500)
(208,487)(209,492)(210,494)(211,490)(212,495)(213,488)(214,493)(215,489)
(216,491)(217,523)(218,528)(219,530)(220,526)(221,531)(222,524)(223,529)
(224,525)(225,527)(226,532)(227,537)(228,539)(229,535)(230,540)(231,533)
(232,538)(233,534)(234,536)(235,505)(236,510)(237,512)(238,508)(239,513)
(240,506)(241,511)(242,507)(243,509)(244,514)(245,519)(246,521)(247,517)
(248,522)(249,515)(250,520)(251,516)(252,518)(253,568)(254,573)(255,575)
(256,571)(257,576)(258,569)(259,574)(260,570)(261,572)(262,559)(263,564)
(264,566)(265,562)(266,567)(267,560)(268,565)(269,561)(270,563)(271,550)
(272,555)(273,557)(274,553)(275,558)(276,551)(277,556)(278,552)(279,554)
(280,541)(281,546)(282,548)(283,544)(284,549)(285,542)(286,547)(287,543)
(288,545);
s1 := Sym(576)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)
( 44, 49)( 45, 51)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)
( 78, 99)( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)
( 86,106)( 87,108)( 88,104)( 89,103)( 90,105)(109,137)(110,136)(111,138)
(112,143)(113,142)(114,144)(115,140)(116,139)(117,141)(118,128)(119,127)
(120,129)(121,134)(122,133)(123,135)(124,131)(125,130)(126,132)(145,182)
(146,181)(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)
(154,191)(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)
(162,195)(163,200)(164,199)(165,201)(166,206)(167,205)(168,207)(169,203)
(170,202)(171,204)(172,209)(173,208)(174,210)(175,215)(176,214)(177,216)
(178,212)(179,211)(180,213)(217,272)(218,271)(219,273)(220,278)(221,277)
(222,279)(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)
(230,286)(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)
(238,260)(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)
(246,264)(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)
(290,361)(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)
(298,371)(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)
(306,375)(307,380)(308,379)(309,381)(310,386)(311,385)(312,387)(313,383)
(314,382)(315,384)(316,389)(317,388)(318,390)(319,395)(320,394)(321,396)
(322,392)(323,391)(324,393)(325,407)(326,406)(327,408)(328,413)(329,412)
(330,414)(331,410)(332,409)(333,411)(334,398)(335,397)(336,399)(337,404)
(338,403)(339,405)(340,401)(341,400)(342,402)(343,425)(344,424)(345,426)
(346,431)(347,430)(348,432)(349,428)(350,427)(351,429)(352,416)(353,415)
(354,417)(355,422)(356,421)(357,423)(358,419)(359,418)(360,420)(433,551)
(434,550)(435,552)(436,557)(437,556)(438,558)(439,554)(440,553)(441,555)
(442,542)(443,541)(444,543)(445,548)(446,547)(447,549)(448,545)(449,544)
(450,546)(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)
(458,571)(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)
(466,563)(467,562)(468,564)(469,515)(470,514)(471,516)(472,521)(473,520)
(474,522)(475,518)(476,517)(477,519)(478,506)(479,505)(480,507)(481,512)
(482,511)(483,513)(484,509)(485,508)(486,510)(487,533)(488,532)(489,534)
(490,539)(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)
(498,525)(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);
s2 := Sym(576)!( 1,433)( 2,440)( 3,438)( 4,439)( 5,437)( 6,435)( 7,436)
( 8,434)( 9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)
( 16,445)( 17,443)( 18,450)( 19,451)( 20,458)( 21,456)( 22,457)( 23,455)
( 24,453)( 25,454)( 26,452)( 27,459)( 28,460)( 29,467)( 30,465)( 31,466)
( 32,464)( 33,462)( 34,463)( 35,461)( 36,468)( 37,469)( 38,476)( 39,474)
( 40,475)( 41,473)( 42,471)( 43,472)( 44,470)( 45,477)( 46,478)( 47,485)
( 48,483)( 49,484)( 50,482)( 51,480)( 52,481)( 53,479)( 54,486)( 55,487)
( 56,494)( 57,492)( 58,493)( 59,491)( 60,489)( 61,490)( 62,488)( 63,495)
( 64,496)( 65,503)( 66,501)( 67,502)( 68,500)( 69,498)( 70,499)( 71,497)
( 72,504)( 73,532)( 74,539)( 75,537)( 76,538)( 77,536)( 78,534)( 79,535)
( 80,533)( 81,540)( 82,523)( 83,530)( 84,528)( 85,529)( 86,527)( 87,525)
( 88,526)( 89,524)( 90,531)( 91,514)( 92,521)( 93,519)( 94,520)( 95,518)
( 96,516)( 97,517)( 98,515)( 99,522)(100,505)(101,512)(102,510)(103,511)
(104,509)(105,507)(106,508)(107,506)(108,513)(109,568)(110,575)(111,573)
(112,574)(113,572)(114,570)(115,571)(116,569)(117,576)(118,559)(119,566)
(120,564)(121,565)(122,563)(123,561)(124,562)(125,560)(126,567)(127,550)
(128,557)(129,555)(130,556)(131,554)(132,552)(133,553)(134,551)(135,558)
(136,541)(137,548)(138,546)(139,547)(140,545)(141,543)(142,544)(143,542)
(144,549)(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)
(152,290)(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)
(160,301)(161,299)(162,306)(163,307)(164,314)(165,312)(166,313)(167,311)
(168,309)(169,310)(170,308)(171,315)(172,316)(173,323)(174,321)(175,322)
(176,320)(177,318)(178,319)(179,317)(180,324)(181,325)(182,332)(183,330)
(184,331)(185,329)(186,327)(187,328)(188,326)(189,333)(190,334)(191,341)
(192,339)(193,340)(194,338)(195,336)(196,337)(197,335)(198,342)(199,343)
(200,350)(201,348)(202,349)(203,347)(204,345)(205,346)(206,344)(207,351)
(208,352)(209,359)(210,357)(211,358)(212,356)(213,354)(214,355)(215,353)
(216,360)(217,388)(218,395)(219,393)(220,394)(221,392)(222,390)(223,391)
(224,389)(225,396)(226,379)(227,386)(228,384)(229,385)(230,383)(231,381)
(232,382)(233,380)(234,387)(235,370)(236,377)(237,375)(238,376)(239,374)
(240,372)(241,373)(242,371)(243,378)(244,361)(245,368)(246,366)(247,367)
(248,365)(249,363)(250,364)(251,362)(252,369)(253,424)(254,431)(255,429)
(256,430)(257,428)(258,426)(259,427)(260,425)(261,432)(262,415)(263,422)
(264,420)(265,421)(266,419)(267,417)(268,418)(269,416)(270,423)(271,406)
(272,413)(273,411)(274,412)(275,410)(276,408)(277,409)(278,407)(279,414)
(280,397)(281,404)(282,402)(283,403)(284,401)(285,399)(286,400)(287,398)
(288,405);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope