Polytope of Type {8,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,24}*1152b
if this polytope has a name.
Group : SmallGroup(1152,12921)
Rank : 3
Schlafli Type : {8,24}
Number of vertices, edges, etc : 24, 288, 72
Order of s0s1s2 : 8
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,12}*576a, {4,24}*576b
   4-fold quotients : {8,6}*288, {4,12}*288
   8-fold quotients : {4,6}*144
   9-fold quotients : {8,8}*128c
   16-fold quotients : {4,6}*72
   18-fold quotients : {8,4}*64a, {4,8}*64b
   36-fold quotients : {4,4}*32, {8,2}*32
   72-fold quotients : {2,4}*16, {4,2}*16
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,289)(  2,291)(  3,290)(  4,293)(  5,292)(  6,294)(  7,297)(  8,296)
(  9,295)( 10,298)( 11,300)( 12,299)( 13,302)( 14,301)( 15,303)( 16,306)
( 17,305)( 18,304)( 19,307)( 20,309)( 21,308)( 22,311)( 23,310)( 24,312)
( 25,315)( 26,314)( 27,313)( 28,316)( 29,318)( 30,317)( 31,320)( 32,319)
( 33,321)( 34,324)( 35,323)( 36,322)( 37,334)( 38,336)( 39,335)( 40,338)
( 41,337)( 42,339)( 43,342)( 44,341)( 45,340)( 46,325)( 47,327)( 48,326)
( 49,329)( 50,328)( 51,330)( 52,333)( 53,332)( 54,331)( 55,352)( 56,354)
( 57,353)( 58,356)( 59,355)( 60,357)( 61,360)( 62,359)( 63,358)( 64,343)
( 65,345)( 66,344)( 67,347)( 68,346)( 69,348)( 70,351)( 71,350)( 72,349)
( 73,379)( 74,381)( 75,380)( 76,383)( 77,382)( 78,384)( 79,387)( 80,386)
( 81,385)( 82,388)( 83,390)( 84,389)( 85,392)( 86,391)( 87,393)( 88,396)
( 89,395)( 90,394)( 91,361)( 92,363)( 93,362)( 94,365)( 95,364)( 96,366)
( 97,369)( 98,368)( 99,367)(100,370)(101,372)(102,371)(103,374)(104,373)
(105,375)(106,378)(107,377)(108,376)(109,424)(110,426)(111,425)(112,428)
(113,427)(114,429)(115,432)(116,431)(117,430)(118,415)(119,417)(120,416)
(121,419)(122,418)(123,420)(124,423)(125,422)(126,421)(127,406)(128,408)
(129,407)(130,410)(131,409)(132,411)(133,414)(134,413)(135,412)(136,397)
(137,399)(138,398)(139,401)(140,400)(141,402)(142,405)(143,404)(144,403)
(145,433)(146,435)(147,434)(148,437)(149,436)(150,438)(151,441)(152,440)
(153,439)(154,442)(155,444)(156,443)(157,446)(158,445)(159,447)(160,450)
(161,449)(162,448)(163,451)(164,453)(165,452)(166,455)(167,454)(168,456)
(169,459)(170,458)(171,457)(172,460)(173,462)(174,461)(175,464)(176,463)
(177,465)(178,468)(179,467)(180,466)(181,478)(182,480)(183,479)(184,482)
(185,481)(186,483)(187,486)(188,485)(189,484)(190,469)(191,471)(192,470)
(193,473)(194,472)(195,474)(196,477)(197,476)(198,475)(199,496)(200,498)
(201,497)(202,500)(203,499)(204,501)(205,504)(206,503)(207,502)(208,487)
(209,489)(210,488)(211,491)(212,490)(213,492)(214,495)(215,494)(216,493)
(217,523)(218,525)(219,524)(220,527)(221,526)(222,528)(223,531)(224,530)
(225,529)(226,532)(227,534)(228,533)(229,536)(230,535)(231,537)(232,540)
(233,539)(234,538)(235,505)(236,507)(237,506)(238,509)(239,508)(240,510)
(241,513)(242,512)(243,511)(244,514)(245,516)(246,515)(247,518)(248,517)
(249,519)(250,522)(251,521)(252,520)(253,568)(254,570)(255,569)(256,572)
(257,571)(258,573)(259,576)(260,575)(261,574)(262,559)(263,561)(264,560)
(265,563)(266,562)(267,564)(268,567)(269,566)(270,565)(271,550)(272,552)
(273,551)(274,554)(275,553)(276,555)(277,558)(278,557)(279,556)(280,541)
(281,543)(282,542)(283,545)(284,544)(285,546)(286,549)(287,548)(288,547);;
s1 := (  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)( 21, 26)
( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 46)( 38, 51)( 39, 53)( 40, 49)
( 41, 54)( 42, 47)( 43, 52)( 44, 48)( 45, 50)( 55, 64)( 56, 69)( 57, 71)
( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)( 74, 96)
( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)( 82,100)
( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)( 90,104)
(109,136)(110,141)(111,143)(112,139)(113,144)(114,137)(115,142)(116,138)
(117,140)(118,127)(119,132)(120,134)(121,130)(122,135)(123,128)(124,133)
(125,129)(126,131)(145,181)(146,186)(147,188)(148,184)(149,189)(150,182)
(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)(158,198)
(159,191)(160,196)(161,192)(162,194)(163,199)(164,204)(165,206)(166,202)
(167,207)(168,200)(169,205)(170,201)(171,203)(172,208)(173,213)(174,215)
(175,211)(176,216)(177,209)(178,214)(179,210)(180,212)(217,271)(218,276)
(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)(226,280)
(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)(234,284)
(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)(242,255)
(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)(250,268)
(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)
(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)
(303,371)(304,376)(305,372)(306,374)(307,379)(308,384)(309,386)(310,382)
(311,387)(312,380)(313,385)(314,381)(315,383)(316,388)(317,393)(318,395)
(319,391)(320,396)(321,389)(322,394)(323,390)(324,392)(325,406)(326,411)
(327,413)(328,409)(329,414)(330,407)(331,412)(332,408)(333,410)(334,397)
(335,402)(336,404)(337,400)(338,405)(339,398)(340,403)(341,399)(342,401)
(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)(350,426)
(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)(358,421)
(359,417)(360,419)(433,550)(434,555)(435,557)(436,553)(437,558)(438,551)
(439,556)(440,552)(441,554)(442,541)(443,546)(444,548)(445,544)(446,549)
(447,542)(448,547)(449,543)(450,545)(451,568)(452,573)(453,575)(454,571)
(455,576)(456,569)(457,574)(458,570)(459,572)(460,559)(461,564)(462,566)
(463,562)(464,567)(465,560)(466,565)(467,561)(468,563)(469,514)(470,519)
(471,521)(472,517)(473,522)(474,515)(475,520)(476,516)(477,518)(478,505)
(479,510)(480,512)(481,508)(482,513)(483,506)(484,511)(485,507)(486,509)
(487,532)(488,537)(489,539)(490,535)(491,540)(492,533)(493,538)(494,534)
(495,536)(496,523)(497,528)(498,530)(499,526)(500,531)(501,524)(502,529)
(503,525)(504,527);;
s2 := (  1,152)(  2,151)(  3,153)(  4,149)(  5,148)(  6,150)(  7,146)(  8,145)
(  9,147)( 10,161)( 11,160)( 12,162)( 13,158)( 14,157)( 15,159)( 16,155)
( 17,154)( 18,156)( 19,170)( 20,169)( 21,171)( 22,167)( 23,166)( 24,168)
( 25,164)( 26,163)( 27,165)( 28,179)( 29,178)( 30,180)( 31,176)( 32,175)
( 33,177)( 34,173)( 35,172)( 36,174)( 37,197)( 38,196)( 39,198)( 40,194)
( 41,193)( 42,195)( 43,191)( 44,190)( 45,192)( 46,188)( 47,187)( 48,189)
( 49,185)( 50,184)( 51,186)( 52,182)( 53,181)( 54,183)( 55,215)( 56,214)
( 57,216)( 58,212)( 59,211)( 60,213)( 61,209)( 62,208)( 63,210)( 64,206)
( 65,205)( 66,207)( 67,203)( 68,202)( 69,204)( 70,200)( 71,199)( 72,201)
( 73,233)( 74,232)( 75,234)( 76,230)( 77,229)( 78,231)( 79,227)( 80,226)
( 81,228)( 82,224)( 83,223)( 84,225)( 85,221)( 86,220)( 87,222)( 88,218)
( 89,217)( 90,219)( 91,251)( 92,250)( 93,252)( 94,248)( 95,247)( 96,249)
( 97,245)( 98,244)( 99,246)(100,242)(101,241)(102,243)(103,239)(104,238)
(105,240)(106,236)(107,235)(108,237)(109,260)(110,259)(111,261)(112,257)
(113,256)(114,258)(115,254)(116,253)(117,255)(118,269)(119,268)(120,270)
(121,266)(122,265)(123,267)(124,263)(125,262)(126,264)(127,278)(128,277)
(129,279)(130,275)(131,274)(132,276)(133,272)(134,271)(135,273)(136,287)
(137,286)(138,288)(139,284)(140,283)(141,285)(142,281)(143,280)(144,282)
(289,440)(290,439)(291,441)(292,437)(293,436)(294,438)(295,434)(296,433)
(297,435)(298,449)(299,448)(300,450)(301,446)(302,445)(303,447)(304,443)
(305,442)(306,444)(307,458)(308,457)(309,459)(310,455)(311,454)(312,456)
(313,452)(314,451)(315,453)(316,467)(317,466)(318,468)(319,464)(320,463)
(321,465)(322,461)(323,460)(324,462)(325,485)(326,484)(327,486)(328,482)
(329,481)(330,483)(331,479)(332,478)(333,480)(334,476)(335,475)(336,477)
(337,473)(338,472)(339,474)(340,470)(341,469)(342,471)(343,503)(344,502)
(345,504)(346,500)(347,499)(348,501)(349,497)(350,496)(351,498)(352,494)
(353,493)(354,495)(355,491)(356,490)(357,492)(358,488)(359,487)(360,489)
(361,521)(362,520)(363,522)(364,518)(365,517)(366,519)(367,515)(368,514)
(369,516)(370,512)(371,511)(372,513)(373,509)(374,508)(375,510)(376,506)
(377,505)(378,507)(379,539)(380,538)(381,540)(382,536)(383,535)(384,537)
(385,533)(386,532)(387,534)(388,530)(389,529)(390,531)(391,527)(392,526)
(393,528)(394,524)(395,523)(396,525)(397,548)(398,547)(399,549)(400,545)
(401,544)(402,546)(403,542)(404,541)(405,543)(406,557)(407,556)(408,558)
(409,554)(410,553)(411,555)(412,551)(413,550)(414,552)(415,566)(416,565)
(417,567)(418,563)(419,562)(420,564)(421,560)(422,559)(423,561)(424,575)
(425,574)(426,576)(427,572)(428,571)(429,573)(430,569)(431,568)(432,570);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,289)(  2,291)(  3,290)(  4,293)(  5,292)(  6,294)(  7,297)
(  8,296)(  9,295)( 10,298)( 11,300)( 12,299)( 13,302)( 14,301)( 15,303)
( 16,306)( 17,305)( 18,304)( 19,307)( 20,309)( 21,308)( 22,311)( 23,310)
( 24,312)( 25,315)( 26,314)( 27,313)( 28,316)( 29,318)( 30,317)( 31,320)
( 32,319)( 33,321)( 34,324)( 35,323)( 36,322)( 37,334)( 38,336)( 39,335)
( 40,338)( 41,337)( 42,339)( 43,342)( 44,341)( 45,340)( 46,325)( 47,327)
( 48,326)( 49,329)( 50,328)( 51,330)( 52,333)( 53,332)( 54,331)( 55,352)
( 56,354)( 57,353)( 58,356)( 59,355)( 60,357)( 61,360)( 62,359)( 63,358)
( 64,343)( 65,345)( 66,344)( 67,347)( 68,346)( 69,348)( 70,351)( 71,350)
( 72,349)( 73,379)( 74,381)( 75,380)( 76,383)( 77,382)( 78,384)( 79,387)
( 80,386)( 81,385)( 82,388)( 83,390)( 84,389)( 85,392)( 86,391)( 87,393)
( 88,396)( 89,395)( 90,394)( 91,361)( 92,363)( 93,362)( 94,365)( 95,364)
( 96,366)( 97,369)( 98,368)( 99,367)(100,370)(101,372)(102,371)(103,374)
(104,373)(105,375)(106,378)(107,377)(108,376)(109,424)(110,426)(111,425)
(112,428)(113,427)(114,429)(115,432)(116,431)(117,430)(118,415)(119,417)
(120,416)(121,419)(122,418)(123,420)(124,423)(125,422)(126,421)(127,406)
(128,408)(129,407)(130,410)(131,409)(132,411)(133,414)(134,413)(135,412)
(136,397)(137,399)(138,398)(139,401)(140,400)(141,402)(142,405)(143,404)
(144,403)(145,433)(146,435)(147,434)(148,437)(149,436)(150,438)(151,441)
(152,440)(153,439)(154,442)(155,444)(156,443)(157,446)(158,445)(159,447)
(160,450)(161,449)(162,448)(163,451)(164,453)(165,452)(166,455)(167,454)
(168,456)(169,459)(170,458)(171,457)(172,460)(173,462)(174,461)(175,464)
(176,463)(177,465)(178,468)(179,467)(180,466)(181,478)(182,480)(183,479)
(184,482)(185,481)(186,483)(187,486)(188,485)(189,484)(190,469)(191,471)
(192,470)(193,473)(194,472)(195,474)(196,477)(197,476)(198,475)(199,496)
(200,498)(201,497)(202,500)(203,499)(204,501)(205,504)(206,503)(207,502)
(208,487)(209,489)(210,488)(211,491)(212,490)(213,492)(214,495)(215,494)
(216,493)(217,523)(218,525)(219,524)(220,527)(221,526)(222,528)(223,531)
(224,530)(225,529)(226,532)(227,534)(228,533)(229,536)(230,535)(231,537)
(232,540)(233,539)(234,538)(235,505)(236,507)(237,506)(238,509)(239,508)
(240,510)(241,513)(242,512)(243,511)(244,514)(245,516)(246,515)(247,518)
(248,517)(249,519)(250,522)(251,521)(252,520)(253,568)(254,570)(255,569)
(256,572)(257,571)(258,573)(259,576)(260,575)(261,574)(262,559)(263,561)
(264,560)(265,563)(266,562)(267,564)(268,567)(269,566)(270,565)(271,550)
(272,552)(273,551)(274,554)(275,553)(276,555)(277,558)(278,557)(279,556)
(280,541)(281,543)(282,542)(283,545)(284,544)(285,546)(286,549)(287,548)
(288,547);
s1 := Sym(576)!(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)
( 21, 26)( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 46)( 38, 51)( 39, 53)
( 40, 49)( 41, 54)( 42, 47)( 43, 52)( 44, 48)( 45, 50)( 55, 64)( 56, 69)
( 57, 71)( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)
( 74, 96)( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)
( 82,100)( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)
( 90,104)(109,136)(110,141)(111,143)(112,139)(113,144)(114,137)(115,142)
(116,138)(117,140)(118,127)(119,132)(120,134)(121,130)(122,135)(123,128)
(124,133)(125,129)(126,131)(145,181)(146,186)(147,188)(148,184)(149,189)
(150,182)(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)
(158,198)(159,191)(160,196)(161,192)(162,194)(163,199)(164,204)(165,206)
(166,202)(167,207)(168,200)(169,205)(170,201)(171,203)(172,208)(173,213)
(174,215)(175,211)(176,216)(177,209)(178,214)(179,210)(180,212)(217,271)
(218,276)(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)
(226,280)(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)
(234,284)(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)
(242,255)(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)
(250,268)(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)
(294,362)(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)
(302,378)(303,371)(304,376)(305,372)(306,374)(307,379)(308,384)(309,386)
(310,382)(311,387)(312,380)(313,385)(314,381)(315,383)(316,388)(317,393)
(318,395)(319,391)(320,396)(321,389)(322,394)(323,390)(324,392)(325,406)
(326,411)(327,413)(328,409)(329,414)(330,407)(331,412)(332,408)(333,410)
(334,397)(335,402)(336,404)(337,400)(338,405)(339,398)(340,403)(341,399)
(342,401)(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)
(350,426)(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)
(358,421)(359,417)(360,419)(433,550)(434,555)(435,557)(436,553)(437,558)
(438,551)(439,556)(440,552)(441,554)(442,541)(443,546)(444,548)(445,544)
(446,549)(447,542)(448,547)(449,543)(450,545)(451,568)(452,573)(453,575)
(454,571)(455,576)(456,569)(457,574)(458,570)(459,572)(460,559)(461,564)
(462,566)(463,562)(464,567)(465,560)(466,565)(467,561)(468,563)(469,514)
(470,519)(471,521)(472,517)(473,522)(474,515)(475,520)(476,516)(477,518)
(478,505)(479,510)(480,512)(481,508)(482,513)(483,506)(484,511)(485,507)
(486,509)(487,532)(488,537)(489,539)(490,535)(491,540)(492,533)(493,538)
(494,534)(495,536)(496,523)(497,528)(498,530)(499,526)(500,531)(501,524)
(502,529)(503,525)(504,527);
s2 := Sym(576)!(  1,152)(  2,151)(  3,153)(  4,149)(  5,148)(  6,150)(  7,146)
(  8,145)(  9,147)( 10,161)( 11,160)( 12,162)( 13,158)( 14,157)( 15,159)
( 16,155)( 17,154)( 18,156)( 19,170)( 20,169)( 21,171)( 22,167)( 23,166)
( 24,168)( 25,164)( 26,163)( 27,165)( 28,179)( 29,178)( 30,180)( 31,176)
( 32,175)( 33,177)( 34,173)( 35,172)( 36,174)( 37,197)( 38,196)( 39,198)
( 40,194)( 41,193)( 42,195)( 43,191)( 44,190)( 45,192)( 46,188)( 47,187)
( 48,189)( 49,185)( 50,184)( 51,186)( 52,182)( 53,181)( 54,183)( 55,215)
( 56,214)( 57,216)( 58,212)( 59,211)( 60,213)( 61,209)( 62,208)( 63,210)
( 64,206)( 65,205)( 66,207)( 67,203)( 68,202)( 69,204)( 70,200)( 71,199)
( 72,201)( 73,233)( 74,232)( 75,234)( 76,230)( 77,229)( 78,231)( 79,227)
( 80,226)( 81,228)( 82,224)( 83,223)( 84,225)( 85,221)( 86,220)( 87,222)
( 88,218)( 89,217)( 90,219)( 91,251)( 92,250)( 93,252)( 94,248)( 95,247)
( 96,249)( 97,245)( 98,244)( 99,246)(100,242)(101,241)(102,243)(103,239)
(104,238)(105,240)(106,236)(107,235)(108,237)(109,260)(110,259)(111,261)
(112,257)(113,256)(114,258)(115,254)(116,253)(117,255)(118,269)(119,268)
(120,270)(121,266)(122,265)(123,267)(124,263)(125,262)(126,264)(127,278)
(128,277)(129,279)(130,275)(131,274)(132,276)(133,272)(134,271)(135,273)
(136,287)(137,286)(138,288)(139,284)(140,283)(141,285)(142,281)(143,280)
(144,282)(289,440)(290,439)(291,441)(292,437)(293,436)(294,438)(295,434)
(296,433)(297,435)(298,449)(299,448)(300,450)(301,446)(302,445)(303,447)
(304,443)(305,442)(306,444)(307,458)(308,457)(309,459)(310,455)(311,454)
(312,456)(313,452)(314,451)(315,453)(316,467)(317,466)(318,468)(319,464)
(320,463)(321,465)(322,461)(323,460)(324,462)(325,485)(326,484)(327,486)
(328,482)(329,481)(330,483)(331,479)(332,478)(333,480)(334,476)(335,475)
(336,477)(337,473)(338,472)(339,474)(340,470)(341,469)(342,471)(343,503)
(344,502)(345,504)(346,500)(347,499)(348,501)(349,497)(350,496)(351,498)
(352,494)(353,493)(354,495)(355,491)(356,490)(357,492)(358,488)(359,487)
(360,489)(361,521)(362,520)(363,522)(364,518)(365,517)(366,519)(367,515)
(368,514)(369,516)(370,512)(371,511)(372,513)(373,509)(374,508)(375,510)
(376,506)(377,505)(378,507)(379,539)(380,538)(381,540)(382,536)(383,535)
(384,537)(385,533)(386,532)(387,534)(388,530)(389,529)(390,531)(391,527)
(392,526)(393,528)(394,524)(395,523)(396,525)(397,548)(398,547)(399,549)
(400,545)(401,544)(402,546)(403,542)(404,541)(405,543)(406,557)(407,556)
(408,558)(409,554)(410,553)(411,555)(412,551)(413,550)(414,552)(415,566)
(416,565)(417,567)(418,563)(419,562)(420,564)(421,560)(422,559)(423,561)
(424,575)(425,574)(426,576)(427,572)(428,571)(429,573)(430,569)(431,568)
(432,570);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0 >; 
 
References : None.
to this polytope