Polytope of Type {8,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,24}*1152c
if this polytope has a name.
Group : SmallGroup(1152,12921)
Rank : 3
Schlafli Type : {8,24}
Number of vertices, edges, etc : 24, 288, 72
Order of s0s1s2 : 8
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,12}*576a, {4,24}*576a
   4-fold quotients : {8,6}*288, {4,12}*288
   8-fold quotients : {4,6}*144
   9-fold quotients : {8,8}*128b
   16-fold quotients : {4,6}*72
   18-fold quotients : {4,8}*64a, {8,4}*64a
   36-fold quotients : {4,4}*32, {2,8}*32, {8,2}*32
   72-fold quotients : {2,4}*16, {4,2}*16
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,433)(  2,434)(  3,435)(  4,441)(  5,439)(  6,440)(  7,437)(  8,438)
(  9,436)( 10,442)( 11,443)( 12,444)( 13,450)( 14,448)( 15,449)( 16,446)
( 17,447)( 18,445)( 19,451)( 20,452)( 21,453)( 22,459)( 23,457)( 24,458)
( 25,455)( 26,456)( 27,454)( 28,460)( 29,461)( 30,462)( 31,468)( 32,466)
( 33,467)( 34,464)( 35,465)( 36,463)( 37,469)( 38,470)( 39,471)( 40,477)
( 41,475)( 42,476)( 43,473)( 44,474)( 45,472)( 46,478)( 47,479)( 48,480)
( 49,486)( 50,484)( 51,485)( 52,482)( 53,483)( 54,481)( 55,487)( 56,488)
( 57,489)( 58,495)( 59,493)( 60,494)( 61,491)( 62,492)( 63,490)( 64,496)
( 65,497)( 66,498)( 67,504)( 68,502)( 69,503)( 70,500)( 71,501)( 72,499)
( 73,532)( 74,533)( 75,534)( 76,540)( 77,538)( 78,539)( 79,536)( 80,537)
( 81,535)( 82,523)( 83,524)( 84,525)( 85,531)( 86,529)( 87,530)( 88,527)
( 89,528)( 90,526)( 91,514)( 92,515)( 93,516)( 94,522)( 95,520)( 96,521)
( 97,518)( 98,519)( 99,517)(100,505)(101,506)(102,507)(103,513)(104,511)
(105,512)(106,509)(107,510)(108,508)(109,568)(110,569)(111,570)(112,576)
(113,574)(114,575)(115,572)(116,573)(117,571)(118,559)(119,560)(120,561)
(121,567)(122,565)(123,566)(124,563)(125,564)(126,562)(127,550)(128,551)
(129,552)(130,558)(131,556)(132,557)(133,554)(134,555)(135,553)(136,541)
(137,542)(138,543)(139,549)(140,547)(141,548)(142,545)(143,546)(144,544)
(145,289)(146,290)(147,291)(148,297)(149,295)(150,296)(151,293)(152,294)
(153,292)(154,298)(155,299)(156,300)(157,306)(158,304)(159,305)(160,302)
(161,303)(162,301)(163,307)(164,308)(165,309)(166,315)(167,313)(168,314)
(169,311)(170,312)(171,310)(172,316)(173,317)(174,318)(175,324)(176,322)
(177,323)(178,320)(179,321)(180,319)(181,325)(182,326)(183,327)(184,333)
(185,331)(186,332)(187,329)(188,330)(189,328)(190,334)(191,335)(192,336)
(193,342)(194,340)(195,341)(196,338)(197,339)(198,337)(199,343)(200,344)
(201,345)(202,351)(203,349)(204,350)(205,347)(206,348)(207,346)(208,352)
(209,353)(210,354)(211,360)(212,358)(213,359)(214,356)(215,357)(216,355)
(217,388)(218,389)(219,390)(220,396)(221,394)(222,395)(223,392)(224,393)
(225,391)(226,379)(227,380)(228,381)(229,387)(230,385)(231,386)(232,383)
(233,384)(234,382)(235,370)(236,371)(237,372)(238,378)(239,376)(240,377)
(241,374)(242,375)(243,373)(244,361)(245,362)(246,363)(247,369)(248,367)
(249,368)(250,365)(251,366)(252,364)(253,424)(254,425)(255,426)(256,432)
(257,430)(258,431)(259,428)(260,429)(261,427)(262,415)(263,416)(264,417)
(265,423)(266,421)(267,422)(268,419)(269,420)(270,418)(271,406)(272,407)
(273,408)(274,414)(275,412)(276,413)(277,410)(278,411)(279,409)(280,397)
(281,398)(282,399)(283,405)(284,403)(285,404)(286,401)(287,402)(288,400);;
s1 := (  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)( 21, 26)
( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 46)( 38, 51)( 39, 53)( 40, 49)
( 41, 54)( 42, 47)( 43, 52)( 44, 48)( 45, 50)( 55, 64)( 56, 69)( 57, 71)
( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)( 74, 96)
( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)( 82,100)
( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)( 90,104)
(109,136)(110,141)(111,143)(112,139)(113,144)(114,137)(115,142)(116,138)
(117,140)(118,127)(119,132)(120,134)(121,130)(122,135)(123,128)(124,133)
(125,129)(126,131)(145,181)(146,186)(147,188)(148,184)(149,189)(150,182)
(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)(158,198)
(159,191)(160,196)(161,192)(162,194)(163,199)(164,204)(165,206)(166,202)
(167,207)(168,200)(169,205)(170,201)(171,203)(172,208)(173,213)(174,215)
(175,211)(176,216)(177,209)(178,214)(179,210)(180,212)(217,271)(218,276)
(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)(226,280)
(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)(234,284)
(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)(242,255)
(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)(250,268)
(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)
(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)
(303,371)(304,376)(305,372)(306,374)(307,379)(308,384)(309,386)(310,382)
(311,387)(312,380)(313,385)(314,381)(315,383)(316,388)(317,393)(318,395)
(319,391)(320,396)(321,389)(322,394)(323,390)(324,392)(325,406)(326,411)
(327,413)(328,409)(329,414)(330,407)(331,412)(332,408)(333,410)(334,397)
(335,402)(336,404)(337,400)(338,405)(339,398)(340,403)(341,399)(342,401)
(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)(350,426)
(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)(358,421)
(359,417)(360,419)(433,550)(434,555)(435,557)(436,553)(437,558)(438,551)
(439,556)(440,552)(441,554)(442,541)(443,546)(444,548)(445,544)(446,549)
(447,542)(448,547)(449,543)(450,545)(451,568)(452,573)(453,575)(454,571)
(455,576)(456,569)(457,574)(458,570)(459,572)(460,559)(461,564)(462,566)
(463,562)(464,567)(465,560)(466,565)(467,561)(468,563)(469,514)(470,519)
(471,521)(472,517)(473,522)(474,515)(475,520)(476,516)(477,518)(478,505)
(479,510)(480,512)(481,508)(482,513)(483,506)(484,511)(485,507)(486,509)
(487,532)(488,537)(489,539)(490,535)(491,540)(492,533)(493,538)(494,534)
(495,536)(496,523)(497,528)(498,530)(499,526)(500,531)(501,524)(502,529)
(503,525)(504,527);;
s2 := (  1,146)(  2,145)(  3,147)(  4,152)(  5,151)(  6,153)(  7,149)(  8,148)
(  9,150)( 10,155)( 11,154)( 12,156)( 13,161)( 14,160)( 15,162)( 16,158)
( 17,157)( 18,159)( 19,164)( 20,163)( 21,165)( 22,170)( 23,169)( 24,171)
( 25,167)( 26,166)( 27,168)( 28,173)( 29,172)( 30,174)( 31,179)( 32,178)
( 33,180)( 34,176)( 35,175)( 36,177)( 37,191)( 38,190)( 39,192)( 40,197)
( 41,196)( 42,198)( 43,194)( 44,193)( 45,195)( 46,182)( 47,181)( 48,183)
( 49,188)( 50,187)( 51,189)( 52,185)( 53,184)( 54,186)( 55,209)( 56,208)
( 57,210)( 58,215)( 59,214)( 60,216)( 61,212)( 62,211)( 63,213)( 64,200)
( 65,199)( 66,201)( 67,206)( 68,205)( 69,207)( 70,203)( 71,202)( 72,204)
( 73,227)( 74,226)( 75,228)( 76,233)( 77,232)( 78,234)( 79,230)( 80,229)
( 81,231)( 82,218)( 83,217)( 84,219)( 85,224)( 86,223)( 87,225)( 88,221)
( 89,220)( 90,222)( 91,245)( 92,244)( 93,246)( 94,251)( 95,250)( 96,252)
( 97,248)( 98,247)( 99,249)(100,236)(101,235)(102,237)(103,242)(104,241)
(105,243)(106,239)(107,238)(108,240)(109,254)(110,253)(111,255)(112,260)
(113,259)(114,261)(115,257)(116,256)(117,258)(118,263)(119,262)(120,264)
(121,269)(122,268)(123,270)(124,266)(125,265)(126,267)(127,272)(128,271)
(129,273)(130,278)(131,277)(132,279)(133,275)(134,274)(135,276)(136,281)
(137,280)(138,282)(139,287)(140,286)(141,288)(142,284)(143,283)(144,285)
(289,434)(290,433)(291,435)(292,440)(293,439)(294,441)(295,437)(296,436)
(297,438)(298,443)(299,442)(300,444)(301,449)(302,448)(303,450)(304,446)
(305,445)(306,447)(307,452)(308,451)(309,453)(310,458)(311,457)(312,459)
(313,455)(314,454)(315,456)(316,461)(317,460)(318,462)(319,467)(320,466)
(321,468)(322,464)(323,463)(324,465)(325,479)(326,478)(327,480)(328,485)
(329,484)(330,486)(331,482)(332,481)(333,483)(334,470)(335,469)(336,471)
(337,476)(338,475)(339,477)(340,473)(341,472)(342,474)(343,497)(344,496)
(345,498)(346,503)(347,502)(348,504)(349,500)(350,499)(351,501)(352,488)
(353,487)(354,489)(355,494)(356,493)(357,495)(358,491)(359,490)(360,492)
(361,515)(362,514)(363,516)(364,521)(365,520)(366,522)(367,518)(368,517)
(369,519)(370,506)(371,505)(372,507)(373,512)(374,511)(375,513)(376,509)
(377,508)(378,510)(379,533)(380,532)(381,534)(382,539)(383,538)(384,540)
(385,536)(386,535)(387,537)(388,524)(389,523)(390,525)(391,530)(392,529)
(393,531)(394,527)(395,526)(396,528)(397,542)(398,541)(399,543)(400,548)
(401,547)(402,549)(403,545)(404,544)(405,546)(406,551)(407,550)(408,552)
(409,557)(410,556)(411,558)(412,554)(413,553)(414,555)(415,560)(416,559)
(417,561)(418,566)(419,565)(420,567)(421,563)(422,562)(423,564)(424,569)
(425,568)(426,570)(427,575)(428,574)(429,576)(430,572)(431,571)(432,573);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,433)(  2,434)(  3,435)(  4,441)(  5,439)(  6,440)(  7,437)
(  8,438)(  9,436)( 10,442)( 11,443)( 12,444)( 13,450)( 14,448)( 15,449)
( 16,446)( 17,447)( 18,445)( 19,451)( 20,452)( 21,453)( 22,459)( 23,457)
( 24,458)( 25,455)( 26,456)( 27,454)( 28,460)( 29,461)( 30,462)( 31,468)
( 32,466)( 33,467)( 34,464)( 35,465)( 36,463)( 37,469)( 38,470)( 39,471)
( 40,477)( 41,475)( 42,476)( 43,473)( 44,474)( 45,472)( 46,478)( 47,479)
( 48,480)( 49,486)( 50,484)( 51,485)( 52,482)( 53,483)( 54,481)( 55,487)
( 56,488)( 57,489)( 58,495)( 59,493)( 60,494)( 61,491)( 62,492)( 63,490)
( 64,496)( 65,497)( 66,498)( 67,504)( 68,502)( 69,503)( 70,500)( 71,501)
( 72,499)( 73,532)( 74,533)( 75,534)( 76,540)( 77,538)( 78,539)( 79,536)
( 80,537)( 81,535)( 82,523)( 83,524)( 84,525)( 85,531)( 86,529)( 87,530)
( 88,527)( 89,528)( 90,526)( 91,514)( 92,515)( 93,516)( 94,522)( 95,520)
( 96,521)( 97,518)( 98,519)( 99,517)(100,505)(101,506)(102,507)(103,513)
(104,511)(105,512)(106,509)(107,510)(108,508)(109,568)(110,569)(111,570)
(112,576)(113,574)(114,575)(115,572)(116,573)(117,571)(118,559)(119,560)
(120,561)(121,567)(122,565)(123,566)(124,563)(125,564)(126,562)(127,550)
(128,551)(129,552)(130,558)(131,556)(132,557)(133,554)(134,555)(135,553)
(136,541)(137,542)(138,543)(139,549)(140,547)(141,548)(142,545)(143,546)
(144,544)(145,289)(146,290)(147,291)(148,297)(149,295)(150,296)(151,293)
(152,294)(153,292)(154,298)(155,299)(156,300)(157,306)(158,304)(159,305)
(160,302)(161,303)(162,301)(163,307)(164,308)(165,309)(166,315)(167,313)
(168,314)(169,311)(170,312)(171,310)(172,316)(173,317)(174,318)(175,324)
(176,322)(177,323)(178,320)(179,321)(180,319)(181,325)(182,326)(183,327)
(184,333)(185,331)(186,332)(187,329)(188,330)(189,328)(190,334)(191,335)
(192,336)(193,342)(194,340)(195,341)(196,338)(197,339)(198,337)(199,343)
(200,344)(201,345)(202,351)(203,349)(204,350)(205,347)(206,348)(207,346)
(208,352)(209,353)(210,354)(211,360)(212,358)(213,359)(214,356)(215,357)
(216,355)(217,388)(218,389)(219,390)(220,396)(221,394)(222,395)(223,392)
(224,393)(225,391)(226,379)(227,380)(228,381)(229,387)(230,385)(231,386)
(232,383)(233,384)(234,382)(235,370)(236,371)(237,372)(238,378)(239,376)
(240,377)(241,374)(242,375)(243,373)(244,361)(245,362)(246,363)(247,369)
(248,367)(249,368)(250,365)(251,366)(252,364)(253,424)(254,425)(255,426)
(256,432)(257,430)(258,431)(259,428)(260,429)(261,427)(262,415)(263,416)
(264,417)(265,423)(266,421)(267,422)(268,419)(269,420)(270,418)(271,406)
(272,407)(273,408)(274,414)(275,412)(276,413)(277,410)(278,411)(279,409)
(280,397)(281,398)(282,399)(283,405)(284,403)(285,404)(286,401)(287,402)
(288,400);
s1 := Sym(576)!(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)
( 21, 26)( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 46)( 38, 51)( 39, 53)
( 40, 49)( 41, 54)( 42, 47)( 43, 52)( 44, 48)( 45, 50)( 55, 64)( 56, 69)
( 57, 71)( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)
( 74, 96)( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)
( 82,100)( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)
( 90,104)(109,136)(110,141)(111,143)(112,139)(113,144)(114,137)(115,142)
(116,138)(117,140)(118,127)(119,132)(120,134)(121,130)(122,135)(123,128)
(124,133)(125,129)(126,131)(145,181)(146,186)(147,188)(148,184)(149,189)
(150,182)(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)
(158,198)(159,191)(160,196)(161,192)(162,194)(163,199)(164,204)(165,206)
(166,202)(167,207)(168,200)(169,205)(170,201)(171,203)(172,208)(173,213)
(174,215)(175,211)(176,216)(177,209)(178,214)(179,210)(180,212)(217,271)
(218,276)(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)
(226,280)(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)
(234,284)(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)
(242,255)(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)
(250,268)(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)
(294,362)(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)
(302,378)(303,371)(304,376)(305,372)(306,374)(307,379)(308,384)(309,386)
(310,382)(311,387)(312,380)(313,385)(314,381)(315,383)(316,388)(317,393)
(318,395)(319,391)(320,396)(321,389)(322,394)(323,390)(324,392)(325,406)
(326,411)(327,413)(328,409)(329,414)(330,407)(331,412)(332,408)(333,410)
(334,397)(335,402)(336,404)(337,400)(338,405)(339,398)(340,403)(341,399)
(342,401)(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)
(350,426)(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)
(358,421)(359,417)(360,419)(433,550)(434,555)(435,557)(436,553)(437,558)
(438,551)(439,556)(440,552)(441,554)(442,541)(443,546)(444,548)(445,544)
(446,549)(447,542)(448,547)(449,543)(450,545)(451,568)(452,573)(453,575)
(454,571)(455,576)(456,569)(457,574)(458,570)(459,572)(460,559)(461,564)
(462,566)(463,562)(464,567)(465,560)(466,565)(467,561)(468,563)(469,514)
(470,519)(471,521)(472,517)(473,522)(474,515)(475,520)(476,516)(477,518)
(478,505)(479,510)(480,512)(481,508)(482,513)(483,506)(484,511)(485,507)
(486,509)(487,532)(488,537)(489,539)(490,535)(491,540)(492,533)(493,538)
(494,534)(495,536)(496,523)(497,528)(498,530)(499,526)(500,531)(501,524)
(502,529)(503,525)(504,527);
s2 := Sym(576)!(  1,146)(  2,145)(  3,147)(  4,152)(  5,151)(  6,153)(  7,149)
(  8,148)(  9,150)( 10,155)( 11,154)( 12,156)( 13,161)( 14,160)( 15,162)
( 16,158)( 17,157)( 18,159)( 19,164)( 20,163)( 21,165)( 22,170)( 23,169)
( 24,171)( 25,167)( 26,166)( 27,168)( 28,173)( 29,172)( 30,174)( 31,179)
( 32,178)( 33,180)( 34,176)( 35,175)( 36,177)( 37,191)( 38,190)( 39,192)
( 40,197)( 41,196)( 42,198)( 43,194)( 44,193)( 45,195)( 46,182)( 47,181)
( 48,183)( 49,188)( 50,187)( 51,189)( 52,185)( 53,184)( 54,186)( 55,209)
( 56,208)( 57,210)( 58,215)( 59,214)( 60,216)( 61,212)( 62,211)( 63,213)
( 64,200)( 65,199)( 66,201)( 67,206)( 68,205)( 69,207)( 70,203)( 71,202)
( 72,204)( 73,227)( 74,226)( 75,228)( 76,233)( 77,232)( 78,234)( 79,230)
( 80,229)( 81,231)( 82,218)( 83,217)( 84,219)( 85,224)( 86,223)( 87,225)
( 88,221)( 89,220)( 90,222)( 91,245)( 92,244)( 93,246)( 94,251)( 95,250)
( 96,252)( 97,248)( 98,247)( 99,249)(100,236)(101,235)(102,237)(103,242)
(104,241)(105,243)(106,239)(107,238)(108,240)(109,254)(110,253)(111,255)
(112,260)(113,259)(114,261)(115,257)(116,256)(117,258)(118,263)(119,262)
(120,264)(121,269)(122,268)(123,270)(124,266)(125,265)(126,267)(127,272)
(128,271)(129,273)(130,278)(131,277)(132,279)(133,275)(134,274)(135,276)
(136,281)(137,280)(138,282)(139,287)(140,286)(141,288)(142,284)(143,283)
(144,285)(289,434)(290,433)(291,435)(292,440)(293,439)(294,441)(295,437)
(296,436)(297,438)(298,443)(299,442)(300,444)(301,449)(302,448)(303,450)
(304,446)(305,445)(306,447)(307,452)(308,451)(309,453)(310,458)(311,457)
(312,459)(313,455)(314,454)(315,456)(316,461)(317,460)(318,462)(319,467)
(320,466)(321,468)(322,464)(323,463)(324,465)(325,479)(326,478)(327,480)
(328,485)(329,484)(330,486)(331,482)(332,481)(333,483)(334,470)(335,469)
(336,471)(337,476)(338,475)(339,477)(340,473)(341,472)(342,474)(343,497)
(344,496)(345,498)(346,503)(347,502)(348,504)(349,500)(350,499)(351,501)
(352,488)(353,487)(354,489)(355,494)(356,493)(357,495)(358,491)(359,490)
(360,492)(361,515)(362,514)(363,516)(364,521)(365,520)(366,522)(367,518)
(368,517)(369,519)(370,506)(371,505)(372,507)(373,512)(374,511)(375,513)
(376,509)(377,508)(378,510)(379,533)(380,532)(381,534)(382,539)(383,538)
(384,540)(385,536)(386,535)(387,537)(388,524)(389,523)(390,525)(391,530)
(392,529)(393,531)(394,527)(395,526)(396,528)(397,542)(398,541)(399,543)
(400,548)(401,547)(402,549)(403,545)(404,544)(405,546)(406,551)(407,550)
(408,552)(409,557)(410,556)(411,558)(412,554)(413,553)(414,555)(415,560)
(416,559)(417,561)(418,566)(419,565)(420,567)(421,563)(422,562)(423,564)
(424,569)(425,568)(426,570)(427,575)(428,574)(429,576)(430,572)(431,571)
(432,573);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope