Polytope of Type {2,16,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,16,6,3}*1152
if this polytope has a name.
Group : SmallGroup(1152,133450)
Rank : 5
Schlafli Type : {2,16,6,3}
Number of vertices, edges, etc : 2, 16, 48, 9, 3
Order of s0s1s2s3s4 : 48
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,8,6,3}*576
   3-fold quotients : {2,16,2,3}*384
   4-fold quotients : {2,4,6,3}*288
   6-fold quotients : {2,8,2,3}*192
   8-fold quotients : {2,2,6,3}*144
   12-fold quotients : {2,4,2,3}*96
   24-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 75)(  4, 76)(  5, 77)(  6, 78)(  7, 79)(  8, 80)(  9, 81)( 10, 82)
( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)( 17, 89)( 18, 90)
( 19, 91)( 20, 92)( 21,102)( 22,103)( 23,104)( 24,105)( 25,106)( 26,107)
( 27,108)( 28,109)( 29,110)( 30, 93)( 31, 94)( 32, 95)( 33, 96)( 34, 97)
( 35, 98)( 36, 99)( 37,100)( 38,101)( 39,129)( 40,130)( 41,131)( 42,132)
( 43,133)( 44,134)( 45,135)( 46,136)( 47,137)( 48,138)( 49,139)( 50,140)
( 51,141)( 52,142)( 53,143)( 54,144)( 55,145)( 56,146)( 57,111)( 58,112)
( 59,113)( 60,114)( 61,115)( 62,116)( 63,117)( 64,118)( 65,119)( 66,120)
( 67,121)( 68,122)( 69,123)( 70,124)( 71,125)( 72,126)( 73,127)( 74,128);;
s2 := (  4,  5)(  7,  8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 21, 30)( 22, 32)
( 23, 31)( 24, 33)( 25, 35)( 26, 34)( 27, 36)( 28, 38)( 29, 37)( 39, 57)
( 40, 59)( 41, 58)( 42, 60)( 43, 62)( 44, 61)( 45, 63)( 46, 65)( 47, 64)
( 48, 66)( 49, 68)( 50, 67)( 51, 69)( 52, 71)( 53, 70)( 54, 72)( 55, 74)
( 56, 73)( 75,111)( 76,113)( 77,112)( 78,114)( 79,116)( 80,115)( 81,117)
( 82,119)( 83,118)( 84,120)( 85,122)( 86,121)( 87,123)( 88,125)( 89,124)
( 90,126)( 91,128)( 92,127)( 93,138)( 94,140)( 95,139)( 96,141)( 97,143)
( 98,142)( 99,144)(100,146)(101,145)(102,129)(103,131)(104,130)(105,132)
(106,134)(107,133)(108,135)(109,137)(110,136);;
s3 := (  3,  4)(  6, 10)(  7,  9)(  8, 11)( 12, 13)( 15, 19)( 16, 18)( 17, 20)
( 21, 22)( 24, 28)( 25, 27)( 26, 29)( 30, 31)( 33, 37)( 34, 36)( 35, 38)
( 39, 40)( 42, 46)( 43, 45)( 44, 47)( 48, 49)( 51, 55)( 52, 54)( 53, 56)
( 57, 58)( 60, 64)( 61, 63)( 62, 65)( 66, 67)( 69, 73)( 70, 72)( 71, 74)
( 75, 76)( 78, 82)( 79, 81)( 80, 83)( 84, 85)( 87, 91)( 88, 90)( 89, 92)
( 93, 94)( 96,100)( 97, 99)( 98,101)(102,103)(105,109)(106,108)(107,110)
(111,112)(114,118)(115,117)(116,119)(120,121)(123,127)(124,126)(125,128)
(129,130)(132,136)(133,135)(134,137)(138,139)(141,145)(142,144)(143,146);;
s4 := (  3,  6)(  4,  8)(  5,  7)( 10, 11)( 12, 15)( 13, 17)( 14, 16)( 19, 20)
( 21, 24)( 22, 26)( 23, 25)( 28, 29)( 30, 33)( 31, 35)( 32, 34)( 37, 38)
( 39, 42)( 40, 44)( 41, 43)( 46, 47)( 48, 51)( 49, 53)( 50, 52)( 55, 56)
( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 69)( 67, 71)( 68, 70)( 73, 74)
( 75, 78)( 76, 80)( 77, 79)( 82, 83)( 84, 87)( 85, 89)( 86, 88)( 91, 92)
( 93, 96)( 94, 98)( 95, 97)(100,101)(102,105)(103,107)(104,106)(109,110)
(111,114)(112,116)(113,115)(118,119)(120,123)(121,125)(122,124)(127,128)
(129,132)(130,134)(131,133)(136,137)(138,141)(139,143)(140,142)(145,146);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  3, 75)(  4, 76)(  5, 77)(  6, 78)(  7, 79)(  8, 80)(  9, 81)
( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)( 17, 89)
( 18, 90)( 19, 91)( 20, 92)( 21,102)( 22,103)( 23,104)( 24,105)( 25,106)
( 26,107)( 27,108)( 28,109)( 29,110)( 30, 93)( 31, 94)( 32, 95)( 33, 96)
( 34, 97)( 35, 98)( 36, 99)( 37,100)( 38,101)( 39,129)( 40,130)( 41,131)
( 42,132)( 43,133)( 44,134)( 45,135)( 46,136)( 47,137)( 48,138)( 49,139)
( 50,140)( 51,141)( 52,142)( 53,143)( 54,144)( 55,145)( 56,146)( 57,111)
( 58,112)( 59,113)( 60,114)( 61,115)( 62,116)( 63,117)( 64,118)( 65,119)
( 66,120)( 67,121)( 68,122)( 69,123)( 70,124)( 71,125)( 72,126)( 73,127)
( 74,128);
s2 := Sym(146)!(  4,  5)(  7,  8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 21, 30)
( 22, 32)( 23, 31)( 24, 33)( 25, 35)( 26, 34)( 27, 36)( 28, 38)( 29, 37)
( 39, 57)( 40, 59)( 41, 58)( 42, 60)( 43, 62)( 44, 61)( 45, 63)( 46, 65)
( 47, 64)( 48, 66)( 49, 68)( 50, 67)( 51, 69)( 52, 71)( 53, 70)( 54, 72)
( 55, 74)( 56, 73)( 75,111)( 76,113)( 77,112)( 78,114)( 79,116)( 80,115)
( 81,117)( 82,119)( 83,118)( 84,120)( 85,122)( 86,121)( 87,123)( 88,125)
( 89,124)( 90,126)( 91,128)( 92,127)( 93,138)( 94,140)( 95,139)( 96,141)
( 97,143)( 98,142)( 99,144)(100,146)(101,145)(102,129)(103,131)(104,130)
(105,132)(106,134)(107,133)(108,135)(109,137)(110,136);
s3 := Sym(146)!(  3,  4)(  6, 10)(  7,  9)(  8, 11)( 12, 13)( 15, 19)( 16, 18)
( 17, 20)( 21, 22)( 24, 28)( 25, 27)( 26, 29)( 30, 31)( 33, 37)( 34, 36)
( 35, 38)( 39, 40)( 42, 46)( 43, 45)( 44, 47)( 48, 49)( 51, 55)( 52, 54)
( 53, 56)( 57, 58)( 60, 64)( 61, 63)( 62, 65)( 66, 67)( 69, 73)( 70, 72)
( 71, 74)( 75, 76)( 78, 82)( 79, 81)( 80, 83)( 84, 85)( 87, 91)( 88, 90)
( 89, 92)( 93, 94)( 96,100)( 97, 99)( 98,101)(102,103)(105,109)(106,108)
(107,110)(111,112)(114,118)(115,117)(116,119)(120,121)(123,127)(124,126)
(125,128)(129,130)(132,136)(133,135)(134,137)(138,139)(141,145)(142,144)
(143,146);
s4 := Sym(146)!(  3,  6)(  4,  8)(  5,  7)( 10, 11)( 12, 15)( 13, 17)( 14, 16)
( 19, 20)( 21, 24)( 22, 26)( 23, 25)( 28, 29)( 30, 33)( 31, 35)( 32, 34)
( 37, 38)( 39, 42)( 40, 44)( 41, 43)( 46, 47)( 48, 51)( 49, 53)( 50, 52)
( 55, 56)( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 69)( 67, 71)( 68, 70)
( 73, 74)( 75, 78)( 76, 80)( 77, 79)( 82, 83)( 84, 87)( 85, 89)( 86, 88)
( 91, 92)( 93, 96)( 94, 98)( 95, 97)(100,101)(102,105)(103,107)(104,106)
(109,110)(111,114)(112,116)(113,115)(118,119)(120,123)(121,125)(122,124)
(127,128)(129,132)(130,134)(131,133)(136,137)(138,141)(139,143)(140,142)
(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope