include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,6,3}*576
if this polytope has a name.
Group : SmallGroup(576,6980)
Rank : 5
Schlafli Type : {2,8,6,3}
Number of vertices, edges, etc : 2, 8, 24, 9, 3
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,8,6,3,2} of size 1152
Vertex Figure Of :
{2,2,8,6,3} of size 1152
{3,2,8,6,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,6,3}*288
3-fold quotients : {2,8,2,3}*192
4-fold quotients : {2,2,6,3}*144
6-fold quotients : {2,4,2,3}*96
12-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,8,6,3}*1152a, {2,16,6,3}*1152, {2,8,6,6}*1152c
3-fold covers : {2,8,6,9}*1728, {2,8,6,3}*1728a, {2,24,6,3}*1728b, {6,8,6,3}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)(12,48)
(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,66)(22,67)(23,68)
(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,57)(31,58)(32,59)(33,60)(34,61)
(35,62)(36,63)(37,64)(38,65);;
s2 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(21,30)(22,31)(23,32)(24,36)
(25,37)(26,38)(27,33)(28,34)(29,35)(39,57)(40,58)(41,59)(42,63)(43,64)(44,65)
(45,60)(46,61)(47,62)(48,66)(49,67)(50,68)(51,72)(52,73)(53,74)(54,69)(55,70)
(56,71);;
s3 := ( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20)(21,24)(22,26)
(23,25)(28,29)(30,33)(31,35)(32,34)(37,38)(39,42)(40,44)(41,43)(46,47)(48,51)
(49,53)(50,52)(55,56)(57,60)(58,62)(59,61)(64,65)(66,69)(67,71)(68,70)
(73,74);;
s4 := ( 3, 4)( 6,10)( 7, 9)( 8,11)(12,13)(15,19)(16,18)(17,20)(21,22)(24,28)
(25,27)(26,29)(30,31)(33,37)(34,36)(35,38)(39,40)(42,46)(43,45)(44,47)(48,49)
(51,55)(52,54)(53,56)(57,58)(60,64)(61,63)(62,65)(66,67)(69,73)(70,72)
(71,74);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)
(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,66)(22,67)
(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,57)(31,58)(32,59)(33,60)
(34,61)(35,62)(36,63)(37,64)(38,65);
s2 := Sym(74)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(21,30)(22,31)(23,32)
(24,36)(25,37)(26,38)(27,33)(28,34)(29,35)(39,57)(40,58)(41,59)(42,63)(43,64)
(44,65)(45,60)(46,61)(47,62)(48,66)(49,67)(50,68)(51,72)(52,73)(53,74)(54,69)
(55,70)(56,71);
s3 := Sym(74)!( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20)(21,24)
(22,26)(23,25)(28,29)(30,33)(31,35)(32,34)(37,38)(39,42)(40,44)(41,43)(46,47)
(48,51)(49,53)(50,52)(55,56)(57,60)(58,62)(59,61)(64,65)(66,69)(67,71)(68,70)
(73,74);
s4 := Sym(74)!( 3, 4)( 6,10)( 7, 9)( 8,11)(12,13)(15,19)(16,18)(17,20)(21,22)
(24,28)(25,27)(26,29)(30,31)(33,37)(34,36)(35,38)(39,40)(42,46)(43,45)(44,47)
(48,49)(51,55)(52,54)(53,56)(57,58)(60,64)(61,63)(62,65)(66,67)(69,73)(70,72)
(71,74);
poly := sub<Sym(74)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope