Polytope of Type {3,2,2,4,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,4,12}*1152a
if this polytope has a name.
Group : SmallGroup(1152,134264)
Rank : 6
Schlafli Type : {3,2,2,4,12}
Number of vertices, edges, etc : 3, 3, 2, 4, 24, 12
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,2,2,12}*576, {3,2,2,4,6}*576a
   3-fold quotients : {3,2,2,4,4}*384
   4-fold quotients : {3,2,2,2,6}*288
   6-fold quotients : {3,2,2,2,4}*192, {3,2,2,4,2}*192
   8-fold quotients : {3,2,2,2,3}*144
   12-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 7,11)( 8,15)(13,20)(14,21)(16,24)(17,25);;
s4 := ( 6, 7)( 8,12)( 9,14)(10,13)(11,19)(15,18)(16,23)(17,22)(20,29)(21,28)
(24,27)(25,26);;
s5 := ( 6, 9)( 7,16)( 8,13)(11,24)(12,22)(14,17)(15,20)(18,26)(19,28)(21,25);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(29)!(2,3);
s1 := Sym(29)!(1,2);
s2 := Sym(29)!(4,5);
s3 := Sym(29)!( 7,11)( 8,15)(13,20)(14,21)(16,24)(17,25);
s4 := Sym(29)!( 6, 7)( 8,12)( 9,14)(10,13)(11,19)(15,18)(16,23)(17,22)(20,29)
(21,28)(24,27)(25,26);
s5 := Sym(29)!( 6, 9)( 7,16)( 8,13)(11,24)(12,22)(14,17)(15,20)(18,26)(19,28)
(21,25);
poly := sub<Sym(29)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope