include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,4,2}*192
if this polytope has a name.
Group : SmallGroup(192,1514)
Rank : 6
Schlafli Type : {3,2,2,4,2}
Number of vertices, edges, etc : 3, 3, 2, 4, 4, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,2,4,2,2} of size 384
{3,2,2,4,2,3} of size 576
{3,2,2,4,2,4} of size 768
{3,2,2,4,2,5} of size 960
{3,2,2,4,2,6} of size 1152
{3,2,2,4,2,7} of size 1344
{3,2,2,4,2,9} of size 1728
{3,2,2,4,2,10} of size 1920
Vertex Figure Of :
{2,3,2,2,4,2} of size 384
{3,3,2,2,4,2} of size 768
{4,3,2,2,4,2} of size 768
{6,3,2,2,4,2} of size 1152
{5,3,2,2,4,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,2,4,4}*384, {3,2,4,4,2}*384, {3,2,2,8,2}*384, {6,2,2,4,2}*384
3-fold covers : {9,2,2,4,2}*576, {3,2,2,12,2}*576, {3,2,2,4,6}*576a, {3,2,6,4,2}*576a, {3,6,2,4,2}*576
4-fold covers : {3,2,4,4,4}*768, {3,2,2,4,8}*768a, {3,2,2,8,4}*768a, {3,2,4,8,2}*768a, {3,2,8,4,2}*768a, {3,2,2,4,8}*768b, {3,2,2,8,4}*768b, {3,2,4,8,2}*768b, {3,2,8,4,2}*768b, {3,2,2,4,4}*768, {3,2,4,4,2}*768, {3,2,2,16,2}*768, {6,2,2,4,4}*768, {6,2,4,4,2}*768, {6,4,2,4,2}*768a, {12,2,2,4,2}*768, {6,2,2,8,2}*768, {3,4,2,4,2}*768
5-fold covers : {3,2,2,20,2}*960, {3,2,2,4,10}*960, {3,2,10,4,2}*960, {15,2,2,4,2}*960
6-fold covers : {9,2,2,4,4}*1152, {9,2,4,4,2}*1152, {3,2,4,4,6}*1152, {3,2,6,4,4}*1152, {3,6,2,4,4}*1152, {3,6,4,4,2}*1152, {3,2,2,4,12}*1152a, {3,2,2,12,4}*1152a, {3,2,4,12,2}*1152a, {3,2,12,4,2}*1152a, {9,2,2,8,2}*1152, {3,2,2,8,6}*1152, {3,2,6,8,2}*1152, {3,6,2,8,2}*1152, {3,2,2,24,2}*1152, {18,2,2,4,2}*1152, {6,2,2,4,6}*1152a, {6,2,6,4,2}*1152a, {6,6,2,4,2}*1152a, {6,6,2,4,2}*1152c, {6,2,2,12,2}*1152
7-fold covers : {3,2,2,28,2}*1344, {3,2,2,4,14}*1344, {3,2,14,4,2}*1344, {21,2,2,4,2}*1344
9-fold covers : {27,2,2,4,2}*1728, {9,2,2,12,2}*1728, {3,2,2,36,2}*1728, {3,2,2,4,18}*1728a, {3,2,18,4,2}*1728a, {9,2,2,4,6}*1728a, {9,2,6,4,2}*1728a, {9,6,2,4,2}*1728, {3,6,2,4,2}*1728, {3,6,6,4,2}*1728a, {3,2,2,12,6}*1728a, {3,2,2,12,6}*1728b, {3,2,6,12,2}*1728a, {3,2,6,12,2}*1728b, {3,6,2,12,2}*1728, {3,2,6,4,6}*1728, {3,6,2,4,6}*1728a, {3,2,2,12,6}*1728c, {3,2,6,12,2}*1728c, {3,6,6,4,2}*1728d, {3,2,2,4,6}*1728, {3,2,6,4,2}*1728
10-fold covers : {15,2,2,4,4}*1920, {15,2,4,4,2}*1920, {3,2,4,4,10}*1920, {3,2,10,4,4}*1920, {3,2,2,4,20}*1920, {3,2,2,20,4}*1920, {3,2,4,20,2}*1920, {3,2,20,4,2}*1920, {15,2,2,8,2}*1920, {3,2,2,8,10}*1920, {3,2,10,8,2}*1920, {3,2,2,40,2}*1920, {30,2,2,4,2}*1920, {6,2,2,4,10}*1920, {6,2,10,4,2}*1920, {6,10,2,4,2}*1920, {6,2,2,20,2}*1920
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := (7,8);;
s4 := (6,7)(8,9);;
s5 := (10,11);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(11)!(2,3);
s1 := Sym(11)!(1,2);
s2 := Sym(11)!(4,5);
s3 := Sym(11)!(7,8);
s4 := Sym(11)!(6,7)(8,9);
s5 := Sym(11)!(10,11);
poly := sub<Sym(11)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope