Polytope of Type {2,2,12,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,12,12}*1152a
if this polytope has a name.
Group : SmallGroup(1152,134272)
Rank : 5
Schlafli Type : {2,2,12,12}
Number of vertices, edges, etc : 2, 2, 12, 72, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,12}*576a, {2,2,12,6}*576a
   3-fold quotients : {2,2,4,12}*384a, {2,2,12,4}*384a
   4-fold quotients : {2,2,6,6}*288a
   6-fold quotients : {2,2,2,12}*192, {2,2,12,2}*192, {2,2,4,6}*192a, {2,2,6,4}*192a
   9-fold quotients : {2,2,4,4}*128
   12-fold quotients : {2,2,2,6}*96, {2,2,6,2}*96
   18-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
   24-fold quotients : {2,2,2,3}*48, {2,2,3,2}*48
   36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 8,11)( 9,12)(10,13)(17,20)(18,21)(19,22)(26,29)(27,30)(28,31)(35,38)
(36,39)(37,40)(41,59)(42,60)(43,61)(44,65)(45,66)(46,67)(47,62)(48,63)(49,64)
(50,68)(51,69)(52,70)(53,74)(54,75)(55,76)(56,71)(57,72)(58,73);;
s3 := ( 5,44)( 6,46)( 7,45)( 8,41)( 9,43)(10,42)(11,47)(12,49)(13,48)(14,53)
(15,55)(16,54)(17,50)(18,52)(19,51)(20,56)(21,58)(22,57)(23,62)(24,64)(25,63)
(26,59)(27,61)(28,60)(29,65)(30,67)(31,66)(32,71)(33,73)(34,72)(35,68)(36,70)
(37,69)(38,74)(39,76)(40,75);;
s4 := ( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)(32,33)
(35,36)(38,39)(41,51)(42,50)(43,52)(44,54)(45,53)(46,55)(47,57)(48,56)(49,58)
(59,69)(60,68)(61,70)(62,72)(63,71)(64,73)(65,75)(66,74)(67,76);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(76)!(1,2);
s1 := Sym(76)!(3,4);
s2 := Sym(76)!( 8,11)( 9,12)(10,13)(17,20)(18,21)(19,22)(26,29)(27,30)(28,31)
(35,38)(36,39)(37,40)(41,59)(42,60)(43,61)(44,65)(45,66)(46,67)(47,62)(48,63)
(49,64)(50,68)(51,69)(52,70)(53,74)(54,75)(55,76)(56,71)(57,72)(58,73);
s3 := Sym(76)!( 5,44)( 6,46)( 7,45)( 8,41)( 9,43)(10,42)(11,47)(12,49)(13,48)
(14,53)(15,55)(16,54)(17,50)(18,52)(19,51)(20,56)(21,58)(22,57)(23,62)(24,64)
(25,63)(26,59)(27,61)(28,60)(29,65)(30,67)(31,66)(32,71)(33,73)(34,72)(35,68)
(36,70)(37,69)(38,74)(39,76)(40,75);
s4 := Sym(76)!( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,51)(42,50)(43,52)(44,54)(45,53)(46,55)(47,57)(48,56)
(49,58)(59,69)(60,68)(61,70)(62,72)(63,71)(64,73)(65,75)(66,74)(67,76);
poly := sub<Sym(76)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope