Polytope of Type {2,2,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,4}*128
if this polytope has a name.
Group : SmallGroup(128,2163)
Rank : 5
Schlafli Type : {2,2,4,4}
Number of vertices, edges, etc : 2, 2, 4, 8, 4
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,4,4,2} of size 256
   {2,2,4,4,4} of size 512
   {2,2,4,4,6} of size 768
   {2,2,4,4,3} of size 768
   {2,2,4,4,6} of size 1152
   {2,2,4,4,10} of size 1280
   {2,2,4,4,14} of size 1792
   {2,2,4,4,5} of size 1920
Vertex Figure Of :
   {2,2,2,4,4} of size 256
   {3,2,2,4,4} of size 384
   {4,2,2,4,4} of size 512
   {5,2,2,4,4} of size 640
   {6,2,2,4,4} of size 768
   {7,2,2,4,4} of size 896
   {9,2,2,4,4} of size 1152
   {10,2,2,4,4} of size 1280
   {11,2,2,4,4} of size 1408
   {13,2,2,4,4} of size 1664
   {14,2,2,4,4} of size 1792
   {15,2,2,4,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
   4-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,4,4,4}*256, {4,2,4,4}*256, {2,2,4,8}*256a, {2,2,8,4}*256a, {2,2,4,8}*256b, {2,2,8,4}*256b, {2,2,4,4}*256
   3-fold covers : {2,2,4,12}*384a, {2,2,12,4}*384a, {2,6,4,4}*384, {6,2,4,4}*384
   4-fold covers : {4,4,4,4}*512, {2,2,4,8}*512a, {2,2,8,4}*512a, {2,2,8,8}*512a, {2,2,8,8}*512b, {2,2,8,8}*512c, {2,2,8,8}*512d, {2,4,8,4}*512a, {2,4,8,4}*512b, {2,4,8,4}*512c, {2,4,8,4}*512d, {2,4,4,8}*512a, {2,8,4,4}*512a, {2,4,4,8}*512b, {2,8,4,4}*512b, {2,4,4,4}*512a, {2,4,4,4}*512b, {2,2,4,16}*512a, {2,2,16,4}*512a, {2,2,4,16}*512b, {2,2,16,4}*512b, {2,2,4,4}*512, {2,2,4,8}*512b, {2,2,8,4}*512b
   5-fold covers : {2,2,4,20}*640, {2,2,20,4}*640, {2,10,4,4}*640, {10,2,4,4}*640
   6-fold covers : {6,4,4,4}*768, {2,4,4,12}*768, {2,12,4,4}*768, {2,4,12,4}*768a, {4,6,4,4}*768a, {12,2,4,4}*768, {4,2,4,12}*768a, {4,2,12,4}*768a, {2,6,4,8}*768a, {2,6,8,4}*768a, {6,2,4,8}*768a, {6,2,8,4}*768a, {2,2,8,12}*768a, {2,2,12,8}*768a, {2,2,4,24}*768a, {2,2,24,4}*768a, {2,6,4,8}*768b, {2,6,8,4}*768b, {6,2,4,8}*768b, {6,2,8,4}*768b, {2,2,8,12}*768b, {2,2,12,8}*768b, {2,2,4,24}*768b, {2,2,24,4}*768b, {2,6,4,4}*768a, {6,2,4,4}*768, {2,2,4,12}*768a, {2,2,12,4}*768a
   7-fold covers : {2,2,4,28}*896, {2,2,28,4}*896, {2,14,4,4}*896, {14,2,4,4}*896
   9-fold covers : {2,18,4,4}*1152, {18,2,4,4}*1152, {2,2,4,36}*1152a, {2,2,36,4}*1152a, {6,6,4,4}*1152a, {6,6,4,4}*1152b, {6,6,4,4}*1152c, {2,6,4,12}*1152, {2,6,12,4}*1152a, {2,6,12,4}*1152b, {6,2,4,12}*1152a, {6,2,12,4}*1152a, {2,6,12,4}*1152c, {2,2,12,12}*1152a, {2,2,12,12}*1152b, {2,2,12,12}*1152c, {2,2,4,4}*1152, {2,2,4,12}*1152, {2,2,12,4}*1152, {2,6,4,4}*1152
   10-fold covers : {10,4,4,4}*1280, {2,4,4,20}*1280, {2,20,4,4}*1280, {2,4,20,4}*1280, {4,10,4,4}*1280, {20,2,4,4}*1280, {4,2,4,20}*1280, {4,2,20,4}*1280, {2,10,4,8}*1280a, {2,10,8,4}*1280a, {10,2,4,8}*1280a, {10,2,8,4}*1280a, {2,2,8,20}*1280a, {2,2,20,8}*1280a, {2,2,4,40}*1280a, {2,2,40,4}*1280a, {2,10,4,8}*1280b, {2,10,8,4}*1280b, {10,2,4,8}*1280b, {10,2,8,4}*1280b, {2,2,8,20}*1280b, {2,2,20,8}*1280b, {2,2,4,40}*1280b, {2,2,40,4}*1280b, {2,10,4,4}*1280, {10,2,4,4}*1280, {2,2,4,20}*1280, {2,2,20,4}*1280
   11-fold covers : {2,22,4,4}*1408, {22,2,4,4}*1408, {2,2,4,44}*1408, {2,2,44,4}*1408
   13-fold covers : {2,26,4,4}*1664, {26,2,4,4}*1664, {2,2,4,52}*1664, {2,2,52,4}*1664
   14-fold covers : {14,4,4,4}*1792, {2,4,4,28}*1792, {2,28,4,4}*1792, {2,4,28,4}*1792, {4,14,4,4}*1792, {28,2,4,4}*1792, {4,2,4,28}*1792, {4,2,28,4}*1792, {2,14,4,8}*1792a, {2,14,8,4}*1792a, {14,2,4,8}*1792a, {14,2,8,4}*1792a, {2,2,8,28}*1792a, {2,2,28,8}*1792a, {2,2,4,56}*1792a, {2,2,56,4}*1792a, {2,14,4,8}*1792b, {2,14,8,4}*1792b, {14,2,4,8}*1792b, {14,2,8,4}*1792b, {2,2,8,28}*1792b, {2,2,28,8}*1792b, {2,2,4,56}*1792b, {2,2,56,4}*1792b, {2,14,4,4}*1792, {14,2,4,4}*1792, {2,2,4,28}*1792, {2,2,28,4}*1792
   15-fold covers : {2,30,4,4}*1920, {30,2,4,4}*1920, {2,2,4,60}*1920a, {2,2,60,4}*1920a, {6,10,4,4}*1920, {10,6,4,4}*1920, {2,10,4,12}*1920, {2,10,12,4}*1920a, {10,2,4,12}*1920a, {10,2,12,4}*1920a, {2,6,4,20}*1920, {2,6,20,4}*1920, {6,2,4,20}*1920, {6,2,20,4}*1920, {2,2,12,20}*1920, {2,2,20,12}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8,10);;
s3 := ( 5, 6)( 7, 9)( 8,11)(10,12);;
s4 := ( 6, 8)( 7,10);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!(1,2);
s1 := Sym(12)!(3,4);
s2 := Sym(12)!( 6, 7)( 8,10);
s3 := Sym(12)!( 5, 6)( 7, 9)( 8,11)(10,12);
s4 := Sym(12)!( 6, 8)( 7,10);
poly := sub<Sym(12)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope