include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,72,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,72,2}*1152
if this polytope has a name.
Group : SmallGroup(1152,152545)
Rank : 5
Schlafli Type : {2,2,72,2}
Number of vertices, edges, etc : 2, 2, 72, 72, 2
Order of s0s1s2s3s4 : 72
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,36,2}*576
3-fold quotients : {2,2,24,2}*384
4-fold quotients : {2,2,18,2}*288
6-fold quotients : {2,2,12,2}*192
8-fold quotients : {2,2,9,2}*144
9-fold quotients : {2,2,8,2}*128
12-fold quotients : {2,2,6,2}*96
18-fold quotients : {2,2,4,2}*64
24-fold quotients : {2,2,3,2}*48
36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8,12)( 9,11)(10,13)(15,16)(17,21)(18,20)(19,22)(23,32)(24,34)
(25,33)(26,39)(27,38)(28,40)(29,36)(30,35)(31,37)(41,59)(42,61)(43,60)(44,66)
(45,65)(46,67)(47,63)(48,62)(49,64)(50,68)(51,70)(52,69)(53,75)(54,74)(55,76)
(56,72)(57,71)(58,73);;
s3 := ( 5,44)( 6,46)( 7,45)( 8,41)( 9,43)(10,42)(11,48)(12,47)(13,49)(14,53)
(15,55)(16,54)(17,50)(18,52)(19,51)(20,57)(21,56)(22,58)(23,71)(24,73)(25,72)
(26,68)(27,70)(28,69)(29,75)(30,74)(31,76)(32,62)(33,64)(34,63)(35,59)(36,61)
(37,60)(38,66)(39,65)(40,67);;
s4 := (77,78);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(78)!(1,2);
s1 := Sym(78)!(3,4);
s2 := Sym(78)!( 6, 7)( 8,12)( 9,11)(10,13)(15,16)(17,21)(18,20)(19,22)(23,32)
(24,34)(25,33)(26,39)(27,38)(28,40)(29,36)(30,35)(31,37)(41,59)(42,61)(43,60)
(44,66)(45,65)(46,67)(47,63)(48,62)(49,64)(50,68)(51,70)(52,69)(53,75)(54,74)
(55,76)(56,72)(57,71)(58,73);
s3 := Sym(78)!( 5,44)( 6,46)( 7,45)( 8,41)( 9,43)(10,42)(11,48)(12,47)(13,49)
(14,53)(15,55)(16,54)(17,50)(18,52)(19,51)(20,57)(21,56)(22,58)(23,71)(24,73)
(25,72)(26,68)(27,70)(28,69)(29,75)(30,74)(31,76)(32,62)(33,64)(34,63)(35,59)
(36,61)(37,60)(38,66)(39,65)(40,67);
s4 := Sym(78)!(77,78);
poly := sub<Sym(78)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope