include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,2,2,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,2,2,4}*1152c
if this polytope has a name.
Group : SmallGroup(1152,153175)
Rank : 6
Schlafli Type : {6,6,2,2,4}
Number of vertices, edges, etc : 6, 18, 6, 2, 4, 4
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,2,2,4}*576, {6,6,2,2,2}*576c
3-fold quotients : {6,2,2,2,4}*384
4-fold quotients : {3,6,2,2,2}*288
6-fold quotients : {3,2,2,2,4}*192, {6,2,2,2,2}*192
9-fold quotients : {2,2,2,2,4}*128
12-fold quotients : {3,2,2,2,2}*96
18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,18)(16,17);;
s1 := ( 1,15)( 2,11)( 3, 9)( 4,17)( 5, 7)( 6,16)( 8,13)(10,12)(14,18);;
s2 := ( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18);;
s3 := (19,20);;
s4 := (22,23);;
s5 := (21,22)(23,24);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5*s4*s5*s4*s5, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,18)(16,17);
s1 := Sym(24)!( 1,15)( 2,11)( 3, 9)( 4,17)( 5, 7)( 6,16)( 8,13)(10,12)(14,18);
s2 := Sym(24)!( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18);
s3 := Sym(24)!(19,20);
s4 := Sym(24)!(22,23);
s5 := Sym(24)!(21,22)(23,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >;
to this polytope