include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,2,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,2,2,2}*288
if this polytope has a name.
Group : SmallGroup(288,1040)
Rank : 6
Schlafli Type : {3,6,2,2,2}
Number of vertices, edges, etc : 3, 9, 6, 2, 2, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,6,2,2,2,2} of size 576
{3,6,2,2,2,3} of size 864
{3,6,2,2,2,4} of size 1152
{3,6,2,2,2,5} of size 1440
{3,6,2,2,2,6} of size 1728
Vertex Figure Of :
{2,3,6,2,2,2} of size 576
{4,3,6,2,2,2} of size 1152
{6,3,6,2,2,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,6,2,2,4}*576, {3,6,2,4,2}*576, {3,6,4,2,2}*576, {6,6,2,2,2}*576c
3-fold covers : {9,6,2,2,2}*864, {3,6,2,2,2}*864, {3,6,2,2,6}*864, {3,6,2,6,2}*864, {3,6,6,2,2}*864b
4-fold covers : {3,6,2,4,4}*1152, {3,6,4,4,2}*1152, {3,6,4,2,4}*1152, {3,6,2,2,8}*1152, {3,6,2,8,2}*1152, {3,6,8,2,2}*1152, {6,6,2,2,4}*1152c, {6,6,2,4,2}*1152c, {6,6,4,2,2}*1152c, {6,12,2,2,2}*1152a, {12,6,2,2,2}*1152c, {3,6,2,2,2}*1152, {3,12,2,2,2}*1152
5-fold covers : {3,6,2,2,10}*1440, {3,6,2,10,2}*1440, {3,6,10,2,2}*1440, {15,6,2,2,2}*1440
6-fold covers : {9,6,2,2,4}*1728, {9,6,2,4,2}*1728, {3,6,2,2,4}*1728, {3,6,2,4,2}*1728, {9,6,4,2,2}*1728, {3,6,4,2,2}*1728a, {18,6,2,2,2}*1728b, {6,6,2,2,2}*1728c, {3,6,2,2,12}*1728, {3,6,2,12,2}*1728, {3,6,2,4,6}*1728a, {3,6,2,6,4}*1728a, {3,6,6,2,4}*1728b, {3,6,12,2,2}*1728b, {3,6,4,2,6}*1728, {3,6,4,6,2}*1728, {3,6,6,4,2}*1728d, {6,6,2,2,2}*1728d, {6,6,2,2,6}*1728c, {6,6,2,6,2}*1728c, {6,6,6,2,2}*1728g
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,9)(7,8);;
s1 := (1,6)(2,4)(3,8)(5,7);;
s2 := (4,5)(6,7)(8,9);;
s3 := (10,11);;
s4 := (12,13);;
s5 := (14,15);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!(2,3)(4,5)(6,9)(7,8);
s1 := Sym(15)!(1,6)(2,4)(3,8)(5,7);
s2 := Sym(15)!(4,5)(6,7)(8,9);
s3 := Sym(15)!(10,11);
s4 := Sym(15)!(12,13);
s5 := Sym(15)!(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >;
to this polytope