include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,4,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,4,6,2}*1152
if this polytope has a name.
Group : SmallGroup(1152,153175)
Rank : 6
Schlafli Type : {2,6,4,6,2}
Number of vertices, edges, etc : 2, 6, 12, 12, 6, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,2,6,2}*576
3-fold quotients : {2,2,4,6,2}*384a, {2,6,4,2,2}*384a
4-fold quotients : {2,3,2,6,2}*288, {2,6,2,3,2}*288
6-fold quotients : {2,2,2,6,2}*192, {2,6,2,2,2}*192
8-fold quotients : {2,3,2,3,2}*144
9-fold quotients : {2,2,4,2,2}*128
12-fold quotients : {2,2,2,3,2}*96, {2,3,2,2,2}*96
18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)(33,36)
(34,37)(35,38);;
s2 := ( 3, 6)( 4, 7)( 5, 8)(12,15)(13,16)(14,17)(21,33)(22,34)(23,35)(24,30)
(25,31)(26,32)(27,36)(28,37)(29,38);;
s3 := ( 3,21)( 4,23)( 5,22)( 6,24)( 7,26)( 8,25)( 9,27)(10,29)(11,28)(12,30)
(13,32)(14,31)(15,33)(16,35)(17,34)(18,36)(19,38)(20,37);;
s4 := ( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(30,31)
(33,34)(36,37);;
s5 := (39,40);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)
(33,36)(34,37)(35,38);
s2 := Sym(40)!( 3, 6)( 4, 7)( 5, 8)(12,15)(13,16)(14,17)(21,33)(22,34)(23,35)
(24,30)(25,31)(26,32)(27,36)(28,37)(29,38);
s3 := Sym(40)!( 3,21)( 4,23)( 5,22)( 6,24)( 7,26)( 8,25)( 9,27)(10,29)(11,28)
(12,30)(13,32)(14,31)(15,33)(16,35)(17,34)(18,36)(19,38)(20,37);
s4 := Sym(40)!( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)
(30,31)(33,34)(36,37);
s5 := Sym(40)!(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope