Polytope of Type {6,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,24}*1152d
if this polytope has a name.
Group : SmallGroup(1152,155788)
Rank : 3
Schlafli Type : {6,24}
Number of vertices, edges, etc : 24, 288, 96
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12}*576b, {6,24}*576c, {6,24}*576e
   3-fold quotients : {6,8}*384f
   4-fold quotients : {6,12}*288a
   6-fold quotients : {6,4}*192b, {6,8}*192b, {6,8}*192c
   8-fold quotients : {6,12}*144a, {6,12}*144d
   12-fold quotients : {3,8}*96, {6,4}*96
   16-fold quotients : {6,6}*72a
   24-fold quotients : {2,12}*48, {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
   48-fold quotients : {3,4}*24, {2,6}*24, {6,2}*24
   72-fold quotients : {2,4}*16
   96-fold quotients : {2,3}*12, {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)( 21, 23)
( 22, 24)( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 55)( 30, 56)( 31, 53)
( 32, 54)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)( 38, 64)( 39, 61)
( 40, 62)( 41, 65)( 42, 66)( 43, 68)( 44, 67)( 45, 71)( 46, 72)( 47, 69)
( 48, 70)( 75, 76)( 77, 79)( 78, 80)( 83, 84)( 85, 87)( 86, 88)( 91, 92)
( 93, 95)( 94, 96)( 97,121)( 98,122)( 99,124)(100,123)(101,127)(102,128)
(103,125)(104,126)(105,129)(106,130)(107,132)(108,131)(109,135)(110,136)
(111,133)(112,134)(113,137)(114,138)(115,140)(116,139)(117,143)(118,144)
(119,141)(120,142)(145,146)(149,152)(150,151)(153,154)(157,160)(158,159)
(161,162)(165,168)(166,167)(169,194)(170,193)(171,195)(172,196)(173,200)
(174,199)(175,198)(176,197)(177,202)(178,201)(179,203)(180,204)(181,208)
(182,207)(183,206)(184,205)(185,210)(186,209)(187,211)(188,212)(189,216)
(190,215)(191,214)(192,213)(217,218)(221,224)(222,223)(225,226)(229,232)
(230,231)(233,234)(237,240)(238,239)(241,266)(242,265)(243,267)(244,268)
(245,272)(246,271)(247,270)(248,269)(249,274)(250,273)(251,275)(252,276)
(253,280)(254,279)(255,278)(256,277)(257,282)(258,281)(259,283)(260,284)
(261,288)(262,287)(263,286)(264,285);;
s1 := (  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)(  8, 28)
(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)( 16, 44)
( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)( 24, 36)
( 51, 55)( 52, 56)( 53, 54)( 57, 65)( 58, 66)( 59, 71)( 60, 72)( 61, 70)
( 62, 69)( 63, 67)( 64, 68)( 73, 97)( 74, 98)( 75,103)( 76,104)( 77,102)
( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)( 85,118)
( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)( 93,110)
( 94,109)( 95,107)( 96,108)(123,127)(124,128)(125,126)(129,137)(130,138)
(131,143)(132,144)(133,142)(134,141)(135,139)(136,140)(145,242)(146,241)
(147,248)(148,247)(149,245)(150,246)(151,244)(152,243)(153,258)(154,257)
(155,264)(156,263)(157,261)(158,262)(159,260)(160,259)(161,250)(162,249)
(163,256)(164,255)(165,253)(166,254)(167,252)(168,251)(169,218)(170,217)
(171,224)(172,223)(173,221)(174,222)(175,220)(176,219)(177,234)(178,233)
(179,240)(180,239)(181,237)(182,238)(183,236)(184,235)(185,226)(186,225)
(187,232)(188,231)(189,229)(190,230)(191,228)(192,227)(193,266)(194,265)
(195,272)(196,271)(197,269)(198,270)(199,268)(200,267)(201,282)(202,281)
(203,288)(204,287)(205,285)(206,286)(207,284)(208,283)(209,274)(210,273)
(211,280)(212,279)(213,277)(214,278)(215,276)(216,275);;
s2 := (  1,155)(  2,156)(  3,154)(  4,153)(  5,159)(  6,160)(  7,158)(  8,157)
(  9,147)( 10,148)( 11,146)( 12,145)( 13,151)( 14,152)( 15,150)( 16,149)
( 17,163)( 18,164)( 19,162)( 20,161)( 21,167)( 22,168)( 23,166)( 24,165)
( 25,179)( 26,180)( 27,178)( 28,177)( 29,183)( 30,184)( 31,182)( 32,181)
( 33,171)( 34,172)( 35,170)( 36,169)( 37,175)( 38,176)( 39,174)( 40,173)
( 41,187)( 42,188)( 43,186)( 44,185)( 45,191)( 46,192)( 47,190)( 48,189)
( 49,203)( 50,204)( 51,202)( 52,201)( 53,207)( 54,208)( 55,206)( 56,205)
( 57,195)( 58,196)( 59,194)( 60,193)( 61,199)( 62,200)( 63,198)( 64,197)
( 65,211)( 66,212)( 67,210)( 68,209)( 69,215)( 70,216)( 71,214)( 72,213)
( 73,227)( 74,228)( 75,226)( 76,225)( 77,231)( 78,232)( 79,230)( 80,229)
( 81,219)( 82,220)( 83,218)( 84,217)( 85,223)( 86,224)( 87,222)( 88,221)
( 89,235)( 90,236)( 91,234)( 92,233)( 93,239)( 94,240)( 95,238)( 96,237)
( 97,251)( 98,252)( 99,250)(100,249)(101,255)(102,256)(103,254)(104,253)
(105,243)(106,244)(107,242)(108,241)(109,247)(110,248)(111,246)(112,245)
(113,259)(114,260)(115,258)(116,257)(117,263)(118,264)(119,262)(120,261)
(121,275)(122,276)(123,274)(124,273)(125,279)(126,280)(127,278)(128,277)
(129,267)(130,268)(131,266)(132,265)(133,271)(134,272)(135,270)(136,269)
(137,283)(138,284)(139,282)(140,281)(141,287)(142,288)(143,286)(144,285);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(288)!(  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)
( 21, 23)( 22, 24)( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 55)( 30, 56)
( 31, 53)( 32, 54)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)( 38, 64)
( 39, 61)( 40, 62)( 41, 65)( 42, 66)( 43, 68)( 44, 67)( 45, 71)( 46, 72)
( 47, 69)( 48, 70)( 75, 76)( 77, 79)( 78, 80)( 83, 84)( 85, 87)( 86, 88)
( 91, 92)( 93, 95)( 94, 96)( 97,121)( 98,122)( 99,124)(100,123)(101,127)
(102,128)(103,125)(104,126)(105,129)(106,130)(107,132)(108,131)(109,135)
(110,136)(111,133)(112,134)(113,137)(114,138)(115,140)(116,139)(117,143)
(118,144)(119,141)(120,142)(145,146)(149,152)(150,151)(153,154)(157,160)
(158,159)(161,162)(165,168)(166,167)(169,194)(170,193)(171,195)(172,196)
(173,200)(174,199)(175,198)(176,197)(177,202)(178,201)(179,203)(180,204)
(181,208)(182,207)(183,206)(184,205)(185,210)(186,209)(187,211)(188,212)
(189,216)(190,215)(191,214)(192,213)(217,218)(221,224)(222,223)(225,226)
(229,232)(230,231)(233,234)(237,240)(238,239)(241,266)(242,265)(243,267)
(244,268)(245,272)(246,271)(247,270)(248,269)(249,274)(250,273)(251,275)
(252,276)(253,280)(254,279)(255,278)(256,277)(257,282)(258,281)(259,283)
(260,284)(261,288)(262,287)(263,286)(264,285);
s1 := Sym(288)!(  1, 25)(  2, 26)(  3, 31)(  4, 32)(  5, 30)(  6, 29)(  7, 27)
(  8, 28)(  9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)
( 16, 44)( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)
( 24, 36)( 51, 55)( 52, 56)( 53, 54)( 57, 65)( 58, 66)( 59, 71)( 60, 72)
( 61, 70)( 62, 69)( 63, 67)( 64, 68)( 73, 97)( 74, 98)( 75,103)( 76,104)
( 77,102)( 78,101)( 79, 99)( 80,100)( 81,113)( 82,114)( 83,119)( 84,120)
( 85,118)( 86,117)( 87,115)( 88,116)( 89,105)( 90,106)( 91,111)( 92,112)
( 93,110)( 94,109)( 95,107)( 96,108)(123,127)(124,128)(125,126)(129,137)
(130,138)(131,143)(132,144)(133,142)(134,141)(135,139)(136,140)(145,242)
(146,241)(147,248)(148,247)(149,245)(150,246)(151,244)(152,243)(153,258)
(154,257)(155,264)(156,263)(157,261)(158,262)(159,260)(160,259)(161,250)
(162,249)(163,256)(164,255)(165,253)(166,254)(167,252)(168,251)(169,218)
(170,217)(171,224)(172,223)(173,221)(174,222)(175,220)(176,219)(177,234)
(178,233)(179,240)(180,239)(181,237)(182,238)(183,236)(184,235)(185,226)
(186,225)(187,232)(188,231)(189,229)(190,230)(191,228)(192,227)(193,266)
(194,265)(195,272)(196,271)(197,269)(198,270)(199,268)(200,267)(201,282)
(202,281)(203,288)(204,287)(205,285)(206,286)(207,284)(208,283)(209,274)
(210,273)(211,280)(212,279)(213,277)(214,278)(215,276)(216,275);
s2 := Sym(288)!(  1,155)(  2,156)(  3,154)(  4,153)(  5,159)(  6,160)(  7,158)
(  8,157)(  9,147)( 10,148)( 11,146)( 12,145)( 13,151)( 14,152)( 15,150)
( 16,149)( 17,163)( 18,164)( 19,162)( 20,161)( 21,167)( 22,168)( 23,166)
( 24,165)( 25,179)( 26,180)( 27,178)( 28,177)( 29,183)( 30,184)( 31,182)
( 32,181)( 33,171)( 34,172)( 35,170)( 36,169)( 37,175)( 38,176)( 39,174)
( 40,173)( 41,187)( 42,188)( 43,186)( 44,185)( 45,191)( 46,192)( 47,190)
( 48,189)( 49,203)( 50,204)( 51,202)( 52,201)( 53,207)( 54,208)( 55,206)
( 56,205)( 57,195)( 58,196)( 59,194)( 60,193)( 61,199)( 62,200)( 63,198)
( 64,197)( 65,211)( 66,212)( 67,210)( 68,209)( 69,215)( 70,216)( 71,214)
( 72,213)( 73,227)( 74,228)( 75,226)( 76,225)( 77,231)( 78,232)( 79,230)
( 80,229)( 81,219)( 82,220)( 83,218)( 84,217)( 85,223)( 86,224)( 87,222)
( 88,221)( 89,235)( 90,236)( 91,234)( 92,233)( 93,239)( 94,240)( 95,238)
( 96,237)( 97,251)( 98,252)( 99,250)(100,249)(101,255)(102,256)(103,254)
(104,253)(105,243)(106,244)(107,242)(108,241)(109,247)(110,248)(111,246)
(112,245)(113,259)(114,260)(115,258)(116,257)(117,263)(118,264)(119,262)
(120,261)(121,275)(122,276)(123,274)(124,273)(125,279)(126,280)(127,278)
(128,277)(129,267)(130,268)(131,266)(132,265)(133,271)(134,272)(135,270)
(136,269)(137,283)(138,284)(139,282)(140,281)(141,287)(142,288)(143,286)
(144,285);
poly := sub<Sym(288)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2 >; 
 
References : None.
to this polytope