include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,3,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,3,6}*1152a
if this polytope has a name.
Group : SmallGroup(1152,155790)
Rank : 5
Schlafli Type : {4,4,3,6}
Number of vertices, edges, etc : 8, 16, 12, 9, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,4,3,2}*384a
4-fold quotients : {2,4,3,6}*288
12-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)(26,28)
(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47);;
s1 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)(18,26)
(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)
(38,46)(39,47)(40,48);;
s2 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(17,33)(18,34)(19,36)(20,35)
(21,37)(22,38)(23,40)(24,39)(25,45)(26,46)(27,48)(28,47)(29,41)(30,42)(31,44)
(32,43);;
s3 := ( 1,17)( 2,20)( 3,19)( 4,18)( 5,29)( 6,32)( 7,31)( 8,30)( 9,25)(10,28)
(11,27)(12,26)(13,21)(14,24)(15,23)(16,22)(34,36)(37,45)(38,48)(39,47)(40,46)
(42,44);;
s4 := (17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)
(27,43)(28,44)(29,45)(30,46)(31,47)(32,48);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(48)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)
(26,28)(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47);
s1 := Sym(48)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)
(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)
(37,45)(38,46)(39,47)(40,48);
s2 := Sym(48)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(17,33)(18,34)(19,36)
(20,35)(21,37)(22,38)(23,40)(24,39)(25,45)(26,46)(27,48)(28,47)(29,41)(30,42)
(31,44)(32,43);
s3 := Sym(48)!( 1,17)( 2,20)( 3,19)( 4,18)( 5,29)( 6,32)( 7,31)( 8,30)( 9,25)
(10,28)(11,27)(12,26)(13,21)(14,24)(15,23)(16,22)(34,36)(37,45)(38,48)(39,47)
(40,46)(42,44);
s4 := Sym(48)!(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)
(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48);
poly := sub<Sym(48)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope