include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,3,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,3,6}*288
if this polytope has a name.
Group : SmallGroup(288,1028)
Rank : 5
Schlafli Type : {2,4,3,6}
Number of vertices, edges, etc : 2, 4, 6, 9, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,3,6,2} of size 576
{2,4,3,6,3} of size 864
{2,4,3,6,4} of size 1152
{2,4,3,6,6} of size 1728
{2,4,3,6,6} of size 1728
Vertex Figure Of :
{2,2,4,3,6} of size 576
{3,2,4,3,6} of size 864
{4,2,4,3,6} of size 1152
{5,2,4,3,6} of size 1440
{6,2,4,3,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,3,6}*576, {2,4,6,6}*576e, {2,4,6,6}*576f
3-fold covers : {2,4,9,6}*864, {2,4,3,6}*864
4-fold covers : {4,4,3,6}*1152a, {2,4,12,6}*1152e, {2,4,12,6}*1152g, {4,4,3,6}*1152b, {2,8,3,6}*1152, {2,4,6,12}*1152e, {2,4,3,6}*1152, {2,4,6,6}*1152b, {2,4,3,12}*1152
5-fold covers : {2,4,15,6}*1440
6-fold covers : {2,4,9,6}*1728, {2,4,18,6}*1728d, {2,4,18,6}*1728e, {2,4,3,6}*1728, {2,4,6,6}*1728d, {2,4,6,6}*1728f, {6,4,3,6}*1728, {2,4,6,6}*1728i, {2,12,3,6}*1728, {2,12,6,6}*1728h
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s2 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14);;
s3 := ( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,14);;
s4 := ( 7,11)( 8,12)( 9,13)(10,14);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s2 := Sym(14)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14);
s3 := Sym(14)!( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,14);
s4 := Sym(14)!( 7,11)( 8,12)( 9,13)(10,14);
poly := sub<Sym(14)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 >;
to this polytope