include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,24}*1152e
if this polytope has a name.
Group : SmallGroup(1152,155791)
Rank : 3
Schlafli Type : {6,24}
Number of vertices, edges, etc : 24, 288, 96
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,8}*384e
4-fold quotients : {6,12}*288a
6-fold quotients : {3,8}*192
8-fold quotients : {6,12}*144d
12-fold quotients : {6,4}*96
16-fold quotients : {6,6}*72a
24-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
48-fold quotients : {3,4}*24, {2,6}*24, {6,2}*24
96-fold quotients : {2,3}*12, {3,2}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)(26,30)
(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47);;
s1 := ( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(17,33)(18,36)(19,35)(20,34)
(21,46)(22,47)(23,48)(24,45)(25,41)(26,44)(27,43)(28,42)(29,40)(30,37)(31,38)
(32,39);;
s2 := ( 1,23)( 2,24)( 3,21)( 4,22)( 5,19)( 6,20)( 7,17)( 8,18)( 9,29)(10,30)
(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(33,39)(34,40)(35,37)(36,38)(41,45)
(42,46)(43,47)(44,48);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(48)!( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)
(26,30)(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47);
s1 := Sym(48)!( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(17,33)(18,36)(19,35)
(20,34)(21,46)(22,47)(23,48)(24,45)(25,41)(26,44)(27,43)(28,42)(29,40)(30,37)
(31,38)(32,39);
s2 := Sym(48)!( 1,23)( 2,24)( 3,21)( 4,22)( 5,19)( 6,20)( 7,17)( 8,18)( 9,29)
(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(33,39)(34,40)(35,37)(36,38)
(41,45)(42,46)(43,47)(44,48);
poly := sub<Sym(48)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope