Polytope of Type {24,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,6}*1152g
if this polytope has a name.
Group : SmallGroup(1152,155812)
Rank : 3
Schlafli Type : {24,6}
Number of vertices, edges, etc : 96, 288, 24
Order of s0s1s2 : 24
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6}*576a
   3-fold quotients : {24,6}*384a
   4-fold quotients : {24,6}*288b, {6,6}*288b
   6-fold quotients : {12,6}*192a
   8-fold quotients : {12,6}*144b, {3,6}*144
   12-fold quotients : {24,2}*96, {6,6}*96
   16-fold quotients : {6,6}*72c
   24-fold quotients : {12,2}*48, {3,6}*48, {6,3}*48
   32-fold quotients : {3,6}*36
   36-fold quotients : {8,2}*32
   48-fold quotients : {3,3}*24, {6,2}*24
   72-fold quotients : {4,2}*16
   96-fold quotients : {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 25)( 14, 26)( 15, 28)
( 16, 27)( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 29)( 22, 30)( 23, 32)
( 24, 31)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)( 50, 62)
( 51, 64)( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)
( 59, 68)( 60, 67)( 73,109)( 74,110)( 75,112)( 76,111)( 77,117)( 78,118)
( 79,120)( 80,119)( 81,113)( 82,114)( 83,116)( 84,115)( 85,133)( 86,134)
( 87,136)( 88,135)( 89,141)( 90,142)( 91,144)( 92,143)( 93,137)( 94,138)
( 95,140)( 96,139)( 97,121)( 98,122)( 99,124)(100,123)(101,129)(102,130)
(103,132)(104,131)(105,125)(106,126)(107,128)(108,127)(145,217)(146,218)
(147,220)(148,219)(149,225)(150,226)(151,228)(152,227)(153,221)(154,222)
(155,224)(156,223)(157,241)(158,242)(159,244)(160,243)(161,249)(162,250)
(163,252)(164,251)(165,245)(166,246)(167,248)(168,247)(169,229)(170,230)
(171,232)(172,231)(173,237)(174,238)(175,240)(176,239)(177,233)(178,234)
(179,236)(180,235)(181,253)(182,254)(183,256)(184,255)(185,261)(186,262)
(187,264)(188,263)(189,257)(190,258)(191,260)(192,259)(193,277)(194,278)
(195,280)(196,279)(197,285)(198,286)(199,288)(200,287)(201,281)(202,282)
(203,284)(204,283)(205,265)(206,266)(207,268)(208,267)(209,273)(210,274)
(211,276)(212,275)(213,269)(214,270)(215,272)(216,271);;
s1 := (  1,161)(  2,164)(  3,163)(  4,162)(  5,157)(  6,160)(  7,159)(  8,158)
(  9,165)( 10,168)( 11,167)( 12,166)( 13,149)( 14,152)( 15,151)( 16,150)
( 17,145)( 18,148)( 19,147)( 20,146)( 21,153)( 22,156)( 23,155)( 24,154)
( 25,173)( 26,176)( 27,175)( 28,174)( 29,169)( 30,172)( 31,171)( 32,170)
( 33,177)( 34,180)( 35,179)( 36,178)( 37,197)( 38,200)( 39,199)( 40,198)
( 41,193)( 42,196)( 43,195)( 44,194)( 45,201)( 46,204)( 47,203)( 48,202)
( 49,185)( 50,188)( 51,187)( 52,186)( 53,181)( 54,184)( 55,183)( 56,182)
( 57,189)( 58,192)( 59,191)( 60,190)( 61,209)( 62,212)( 63,211)( 64,210)
( 65,205)( 66,208)( 67,207)( 68,206)( 69,213)( 70,216)( 71,215)( 72,214)
( 73,269)( 74,272)( 75,271)( 76,270)( 77,265)( 78,268)( 79,267)( 80,266)
( 81,273)( 82,276)( 83,275)( 84,274)( 85,257)( 86,260)( 87,259)( 88,258)
( 89,253)( 90,256)( 91,255)( 92,254)( 93,261)( 94,264)( 95,263)( 96,262)
( 97,281)( 98,284)( 99,283)(100,282)(101,277)(102,280)(103,279)(104,278)
(105,285)(106,288)(107,287)(108,286)(109,233)(110,236)(111,235)(112,234)
(113,229)(114,232)(115,231)(116,230)(117,237)(118,240)(119,239)(120,238)
(121,221)(122,224)(123,223)(124,222)(125,217)(126,220)(127,219)(128,218)
(129,225)(130,228)(131,227)(132,226)(133,245)(134,248)(135,247)(136,246)
(137,241)(138,244)(139,243)(140,242)(141,249)(142,252)(143,251)(144,250);;
s2 := (  1,  2)(  5,  6)(  9, 10)( 13, 26)( 14, 25)( 15, 27)( 16, 28)( 17, 30)
( 18, 29)( 19, 31)( 20, 32)( 21, 34)( 22, 33)( 23, 35)( 24, 36)( 37, 38)
( 41, 42)( 45, 46)( 49, 62)( 50, 61)( 51, 63)( 52, 64)( 53, 66)( 54, 65)
( 55, 67)( 56, 68)( 57, 70)( 58, 69)( 59, 71)( 60, 72)( 73, 74)( 77, 78)
( 81, 82)( 85, 98)( 86, 97)( 87, 99)( 88,100)( 89,102)( 90,101)( 91,103)
( 92,104)( 93,106)( 94,105)( 95,107)( 96,108)(109,110)(113,114)(117,118)
(121,134)(122,133)(123,135)(124,136)(125,138)(126,137)(127,139)(128,140)
(129,142)(130,141)(131,143)(132,144)(145,146)(149,150)(153,154)(157,170)
(158,169)(159,171)(160,172)(161,174)(162,173)(163,175)(164,176)(165,178)
(166,177)(167,179)(168,180)(181,182)(185,186)(189,190)(193,206)(194,205)
(195,207)(196,208)(197,210)(198,209)(199,211)(200,212)(201,214)(202,213)
(203,215)(204,216)(217,218)(221,222)(225,226)(229,242)(230,241)(231,243)
(232,244)(233,246)(234,245)(235,247)(236,248)(237,250)(238,249)(239,251)
(240,252)(253,254)(257,258)(261,262)(265,278)(266,277)(267,279)(268,280)
(269,282)(270,281)(271,283)(272,284)(273,286)(274,285)(275,287)(276,288);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(288)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 25)( 14, 26)
( 15, 28)( 16, 27)( 17, 33)( 18, 34)( 19, 36)( 20, 35)( 21, 29)( 22, 30)
( 23, 32)( 24, 31)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)
( 50, 62)( 51, 64)( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)
( 58, 66)( 59, 68)( 60, 67)( 73,109)( 74,110)( 75,112)( 76,111)( 77,117)
( 78,118)( 79,120)( 80,119)( 81,113)( 82,114)( 83,116)( 84,115)( 85,133)
( 86,134)( 87,136)( 88,135)( 89,141)( 90,142)( 91,144)( 92,143)( 93,137)
( 94,138)( 95,140)( 96,139)( 97,121)( 98,122)( 99,124)(100,123)(101,129)
(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)(108,127)(145,217)
(146,218)(147,220)(148,219)(149,225)(150,226)(151,228)(152,227)(153,221)
(154,222)(155,224)(156,223)(157,241)(158,242)(159,244)(160,243)(161,249)
(162,250)(163,252)(164,251)(165,245)(166,246)(167,248)(168,247)(169,229)
(170,230)(171,232)(172,231)(173,237)(174,238)(175,240)(176,239)(177,233)
(178,234)(179,236)(180,235)(181,253)(182,254)(183,256)(184,255)(185,261)
(186,262)(187,264)(188,263)(189,257)(190,258)(191,260)(192,259)(193,277)
(194,278)(195,280)(196,279)(197,285)(198,286)(199,288)(200,287)(201,281)
(202,282)(203,284)(204,283)(205,265)(206,266)(207,268)(208,267)(209,273)
(210,274)(211,276)(212,275)(213,269)(214,270)(215,272)(216,271);
s1 := Sym(288)!(  1,161)(  2,164)(  3,163)(  4,162)(  5,157)(  6,160)(  7,159)
(  8,158)(  9,165)( 10,168)( 11,167)( 12,166)( 13,149)( 14,152)( 15,151)
( 16,150)( 17,145)( 18,148)( 19,147)( 20,146)( 21,153)( 22,156)( 23,155)
( 24,154)( 25,173)( 26,176)( 27,175)( 28,174)( 29,169)( 30,172)( 31,171)
( 32,170)( 33,177)( 34,180)( 35,179)( 36,178)( 37,197)( 38,200)( 39,199)
( 40,198)( 41,193)( 42,196)( 43,195)( 44,194)( 45,201)( 46,204)( 47,203)
( 48,202)( 49,185)( 50,188)( 51,187)( 52,186)( 53,181)( 54,184)( 55,183)
( 56,182)( 57,189)( 58,192)( 59,191)( 60,190)( 61,209)( 62,212)( 63,211)
( 64,210)( 65,205)( 66,208)( 67,207)( 68,206)( 69,213)( 70,216)( 71,215)
( 72,214)( 73,269)( 74,272)( 75,271)( 76,270)( 77,265)( 78,268)( 79,267)
( 80,266)( 81,273)( 82,276)( 83,275)( 84,274)( 85,257)( 86,260)( 87,259)
( 88,258)( 89,253)( 90,256)( 91,255)( 92,254)( 93,261)( 94,264)( 95,263)
( 96,262)( 97,281)( 98,284)( 99,283)(100,282)(101,277)(102,280)(103,279)
(104,278)(105,285)(106,288)(107,287)(108,286)(109,233)(110,236)(111,235)
(112,234)(113,229)(114,232)(115,231)(116,230)(117,237)(118,240)(119,239)
(120,238)(121,221)(122,224)(123,223)(124,222)(125,217)(126,220)(127,219)
(128,218)(129,225)(130,228)(131,227)(132,226)(133,245)(134,248)(135,247)
(136,246)(137,241)(138,244)(139,243)(140,242)(141,249)(142,252)(143,251)
(144,250);
s2 := Sym(288)!(  1,  2)(  5,  6)(  9, 10)( 13, 26)( 14, 25)( 15, 27)( 16, 28)
( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 34)( 22, 33)( 23, 35)( 24, 36)
( 37, 38)( 41, 42)( 45, 46)( 49, 62)( 50, 61)( 51, 63)( 52, 64)( 53, 66)
( 54, 65)( 55, 67)( 56, 68)( 57, 70)( 58, 69)( 59, 71)( 60, 72)( 73, 74)
( 77, 78)( 81, 82)( 85, 98)( 86, 97)( 87, 99)( 88,100)( 89,102)( 90,101)
( 91,103)( 92,104)( 93,106)( 94,105)( 95,107)( 96,108)(109,110)(113,114)
(117,118)(121,134)(122,133)(123,135)(124,136)(125,138)(126,137)(127,139)
(128,140)(129,142)(130,141)(131,143)(132,144)(145,146)(149,150)(153,154)
(157,170)(158,169)(159,171)(160,172)(161,174)(162,173)(163,175)(164,176)
(165,178)(166,177)(167,179)(168,180)(181,182)(185,186)(189,190)(193,206)
(194,205)(195,207)(196,208)(197,210)(198,209)(199,211)(200,212)(201,214)
(202,213)(203,215)(204,216)(217,218)(221,222)(225,226)(229,242)(230,241)
(231,243)(232,244)(233,246)(234,245)(235,247)(236,248)(237,250)(238,249)
(239,251)(240,252)(253,254)(257,258)(261,262)(265,278)(266,277)(267,279)
(268,280)(269,282)(270,281)(271,283)(272,284)(273,286)(274,285)(275,287)
(276,288);
poly := sub<Sym(288)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope