Polytope of Type {24,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,6}*384a
if this polytope has a name.
Group : SmallGroup(384,18032)
Rank : 3
Schlafli Type : {24,6}
Number of vertices, edges, etc : 32, 96, 8
Order of s0s1s2 : 8
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {24,6,2} of size 768
   {24,6,3} of size 1920
Vertex Figure Of :
   {2,24,6} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6}*192a
   4-fold quotients : {6,6}*96
   8-fold quotients : {3,6}*48, {6,3}*48
   12-fold quotients : {8,2}*32
   16-fold quotients : {3,3}*24
   24-fold quotients : {4,2}*16
   48-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {24,6}*768, {24,12}*768a, {24,12}*768c, {48,6}*768a, {48,6}*768b
   3-fold covers : {24,6}*1152g, {24,6}*1152j
   5-fold covers : {120,6}*1920a, {24,30}*1920a
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(25,37)(26,39)(27,38)(28,40)(29,45)(30,47)(31,46)(32,48)(33,41)(34,43)(35,42)
(36,44)(49,73)(50,75)(51,74)(52,76)(53,81)(54,83)(55,82)(56,84)(57,77)(58,79)
(59,78)(60,80)(61,85)(62,87)(63,86)(64,88)(65,93)(66,95)(67,94)(68,96)(69,89)
(70,91)(71,90)(72,92);;
s1 := ( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)(10,58)
(11,60)(12,59)(13,65)(14,66)(15,68)(16,67)(17,61)(18,62)(19,64)(20,63)(21,69)
(22,70)(23,72)(24,71)(25,89)(26,90)(27,92)(28,91)(29,85)(30,86)(31,88)(32,87)
(33,93)(34,94)(35,96)(36,95)(37,77)(38,78)(39,80)(40,79)(41,73)(42,74)(43,76)
(44,75)(45,81)(46,82)(47,84)(48,83);;
s2 := ( 1, 4)( 5,12)( 6,10)( 7,11)( 8, 9)(13,16)(17,24)(18,22)(19,23)(20,21)
(25,28)(29,36)(30,34)(31,35)(32,33)(37,40)(41,48)(42,46)(43,47)(44,45)(49,52)
(53,60)(54,58)(55,59)(56,57)(61,64)(65,72)(66,70)(67,71)(68,69)(73,76)(77,84)
(78,82)(79,83)(80,81)(85,88)(89,96)(90,94)(91,95)(92,93);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(25,37)(26,39)(27,38)(28,40)(29,45)(30,47)(31,46)(32,48)(33,41)(34,43)
(35,42)(36,44)(49,73)(50,75)(51,74)(52,76)(53,81)(54,83)(55,82)(56,84)(57,77)
(58,79)(59,78)(60,80)(61,85)(62,87)(63,86)(64,88)(65,93)(66,95)(67,94)(68,96)
(69,89)(70,91)(71,90)(72,92);
s1 := Sym(96)!( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)
(10,58)(11,60)(12,59)(13,65)(14,66)(15,68)(16,67)(17,61)(18,62)(19,64)(20,63)
(21,69)(22,70)(23,72)(24,71)(25,89)(26,90)(27,92)(28,91)(29,85)(30,86)(31,88)
(32,87)(33,93)(34,94)(35,96)(36,95)(37,77)(38,78)(39,80)(40,79)(41,73)(42,74)
(43,76)(44,75)(45,81)(46,82)(47,84)(48,83);
s2 := Sym(96)!( 1, 4)( 5,12)( 6,10)( 7,11)( 8, 9)(13,16)(17,24)(18,22)(19,23)
(20,21)(25,28)(29,36)(30,34)(31,35)(32,33)(37,40)(41,48)(42,46)(43,47)(44,45)
(49,52)(53,60)(54,58)(55,59)(56,57)(61,64)(65,72)(66,70)(67,71)(68,69)(73,76)
(77,84)(78,82)(79,83)(80,81)(85,88)(89,96)(90,94)(91,95)(92,93);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope