include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,9,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,9,4,2}*1152
if this polytope has a name.
Group : SmallGroup(1152,157449)
Rank : 6
Schlafli Type : {2,4,9,4,2}
Number of vertices, edges, etc : 2, 4, 18, 18, 4, 2
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,4,3,4,2}*384
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)( 17, 18)
( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)( 33, 34)
( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)( 49, 50)
( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)( 65, 66)
( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)( 81, 82)
( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)( 97, 98)
( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)
(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)(129,130)
(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)(145,146);;
s2 := ( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 16, 17)( 19, 35)( 20, 37)
( 21, 36)( 22, 38)( 23, 43)( 24, 45)( 25, 44)( 26, 46)( 27, 39)( 28, 41)
( 29, 40)( 30, 42)( 31, 47)( 32, 49)( 33, 48)( 34, 50)( 51,115)( 52,117)
( 53,116)( 54,118)( 55,123)( 56,125)( 57,124)( 58,126)( 59,119)( 60,121)
( 61,120)( 62,122)( 63,127)( 64,129)( 65,128)( 66,130)( 67, 99)( 68,101)
( 69,100)( 70,102)( 71,107)( 72,109)( 73,108)( 74,110)( 75,103)( 76,105)
( 77,104)( 78,106)( 79,111)( 80,113)( 81,112)( 82,114)( 83,131)( 84,133)
( 85,132)( 86,134)( 87,139)( 88,141)( 89,140)( 90,142)( 91,135)( 92,137)
( 93,136)( 94,138)( 95,143)( 96,145)( 97,144)( 98,146);;
s3 := ( 3, 99)( 4,100)( 5,102)( 6,101)( 7,111)( 8,112)( 9,114)( 10,113)
( 11,107)( 12,108)( 13,110)( 14,109)( 15,103)( 16,104)( 17,106)( 18,105)
( 19,131)( 20,132)( 21,134)( 22,133)( 23,143)( 24,144)( 25,146)( 26,145)
( 27,139)( 28,140)( 29,142)( 30,141)( 31,135)( 32,136)( 33,138)( 34,137)
( 35,115)( 36,116)( 37,118)( 38,117)( 39,127)( 40,128)( 41,130)( 42,129)
( 43,123)( 44,124)( 45,126)( 46,125)( 47,119)( 48,120)( 49,122)( 50,121)
( 53, 54)( 55, 63)( 56, 64)( 57, 66)( 58, 65)( 61, 62)( 67, 83)( 68, 84)
( 69, 86)( 70, 85)( 71, 95)( 72, 96)( 73, 98)( 74, 97)( 75, 91)( 76, 92)
( 77, 94)( 78, 93)( 79, 87)( 80, 88)( 81, 90)( 82, 89);;
s4 := ( 3, 15)( 4, 16)( 5, 17)( 6, 18)( 7, 11)( 8, 12)( 9, 13)( 10, 14)
( 19, 31)( 20, 32)( 21, 33)( 22, 34)( 23, 27)( 24, 28)( 25, 29)( 26, 30)
( 35, 47)( 36, 48)( 37, 49)( 38, 50)( 39, 43)( 40, 44)( 41, 45)( 42, 46)
( 51, 63)( 52, 64)( 53, 65)( 54, 66)( 55, 59)( 56, 60)( 57, 61)( 58, 62)
( 67, 79)( 68, 80)( 69, 81)( 70, 82)( 71, 75)( 72, 76)( 73, 77)( 74, 78)
( 83, 95)( 84, 96)( 85, 97)( 86, 98)( 87, 91)( 88, 92)( 89, 93)( 90, 94)
( 99,111)(100,112)(101,113)(102,114)(103,107)(104,108)(105,109)(106,110)
(115,127)(116,128)(117,129)(118,130)(119,123)(120,124)(121,125)(122,126)
(131,143)(132,144)(133,145)(134,146)(135,139)(136,140)(137,141)(138,142);;
s5 := (147,148);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(148)!(1,2);
s1 := Sym(148)!( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146);
s2 := Sym(148)!( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 16, 17)( 19, 35)
( 20, 37)( 21, 36)( 22, 38)( 23, 43)( 24, 45)( 25, 44)( 26, 46)( 27, 39)
( 28, 41)( 29, 40)( 30, 42)( 31, 47)( 32, 49)( 33, 48)( 34, 50)( 51,115)
( 52,117)( 53,116)( 54,118)( 55,123)( 56,125)( 57,124)( 58,126)( 59,119)
( 60,121)( 61,120)( 62,122)( 63,127)( 64,129)( 65,128)( 66,130)( 67, 99)
( 68,101)( 69,100)( 70,102)( 71,107)( 72,109)( 73,108)( 74,110)( 75,103)
( 76,105)( 77,104)( 78,106)( 79,111)( 80,113)( 81,112)( 82,114)( 83,131)
( 84,133)( 85,132)( 86,134)( 87,139)( 88,141)( 89,140)( 90,142)( 91,135)
( 92,137)( 93,136)( 94,138)( 95,143)( 96,145)( 97,144)( 98,146);
s3 := Sym(148)!( 3, 99)( 4,100)( 5,102)( 6,101)( 7,111)( 8,112)( 9,114)
( 10,113)( 11,107)( 12,108)( 13,110)( 14,109)( 15,103)( 16,104)( 17,106)
( 18,105)( 19,131)( 20,132)( 21,134)( 22,133)( 23,143)( 24,144)( 25,146)
( 26,145)( 27,139)( 28,140)( 29,142)( 30,141)( 31,135)( 32,136)( 33,138)
( 34,137)( 35,115)( 36,116)( 37,118)( 38,117)( 39,127)( 40,128)( 41,130)
( 42,129)( 43,123)( 44,124)( 45,126)( 46,125)( 47,119)( 48,120)( 49,122)
( 50,121)( 53, 54)( 55, 63)( 56, 64)( 57, 66)( 58, 65)( 61, 62)( 67, 83)
( 68, 84)( 69, 86)( 70, 85)( 71, 95)( 72, 96)( 73, 98)( 74, 97)( 75, 91)
( 76, 92)( 77, 94)( 78, 93)( 79, 87)( 80, 88)( 81, 90)( 82, 89);
s4 := Sym(148)!( 3, 15)( 4, 16)( 5, 17)( 6, 18)( 7, 11)( 8, 12)( 9, 13)
( 10, 14)( 19, 31)( 20, 32)( 21, 33)( 22, 34)( 23, 27)( 24, 28)( 25, 29)
( 26, 30)( 35, 47)( 36, 48)( 37, 49)( 38, 50)( 39, 43)( 40, 44)( 41, 45)
( 42, 46)( 51, 63)( 52, 64)( 53, 65)( 54, 66)( 55, 59)( 56, 60)( 57, 61)
( 58, 62)( 67, 79)( 68, 80)( 69, 81)( 70, 82)( 71, 75)( 72, 76)( 73, 77)
( 74, 78)( 83, 95)( 84, 96)( 85, 97)( 86, 98)( 87, 91)( 88, 92)( 89, 93)
( 90, 94)( 99,111)(100,112)(101,113)(102,114)(103,107)(104,108)(105,109)
(106,110)(115,127)(116,128)(117,129)(118,130)(119,123)(120,124)(121,125)
(122,126)(131,143)(132,144)(133,145)(134,146)(135,139)(136,140)(137,141)
(138,142);
s5 := Sym(148)!(147,148);
poly := sub<Sym(148)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope