include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,12}*1152y
if this polytope has a name.
Group : SmallGroup(1152,157458)
Rank : 3
Schlafli Type : {24,12}
Number of vertices, edges, etc : 48, 288, 24
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,12}*576l
8-fold quotients : {6,12}*144d, {12,6}*144d
24-fold quotients : {4,6}*48b, {6,4}*48b
48-fold quotients : {3,4}*24, {4,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,293)( 2,294)( 3,296)( 4,295)( 5,290)( 6,289)( 7,291)( 8,292)
( 9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)( 16,300)
( 17,317)( 18,318)( 19,320)( 20,319)( 21,314)( 22,313)( 23,315)( 24,316)
( 25,309)( 26,310)( 27,312)( 28,311)( 29,306)( 30,305)( 31,307)( 32,308)
( 33,357)( 34,358)( 35,360)( 36,359)( 37,354)( 38,353)( 39,355)( 40,356)
( 41,365)( 42,366)( 43,368)( 44,367)( 45,362)( 46,361)( 47,363)( 48,364)
( 49,381)( 50,382)( 51,384)( 52,383)( 53,378)( 54,377)( 55,379)( 56,380)
( 57,373)( 58,374)( 59,376)( 60,375)( 61,370)( 62,369)( 63,371)( 64,372)
( 65,325)( 66,326)( 67,328)( 68,327)( 69,322)( 70,321)( 71,323)( 72,324)
( 73,333)( 74,334)( 75,336)( 76,335)( 77,330)( 78,329)( 79,331)( 80,332)
( 81,349)( 82,350)( 83,352)( 84,351)( 85,346)( 86,345)( 87,347)( 88,348)
( 89,341)( 90,342)( 91,344)( 92,343)( 93,338)( 94,337)( 95,339)( 96,340)
( 97,389)( 98,390)( 99,392)(100,391)(101,386)(102,385)(103,387)(104,388)
(105,397)(106,398)(107,400)(108,399)(109,394)(110,393)(111,395)(112,396)
(113,413)(114,414)(115,416)(116,415)(117,410)(118,409)(119,411)(120,412)
(121,405)(122,406)(123,408)(124,407)(125,402)(126,401)(127,403)(128,404)
(129,453)(130,454)(131,456)(132,455)(133,450)(134,449)(135,451)(136,452)
(137,461)(138,462)(139,464)(140,463)(141,458)(142,457)(143,459)(144,460)
(145,477)(146,478)(147,480)(148,479)(149,474)(150,473)(151,475)(152,476)
(153,469)(154,470)(155,472)(156,471)(157,466)(158,465)(159,467)(160,468)
(161,421)(162,422)(163,424)(164,423)(165,418)(166,417)(167,419)(168,420)
(169,429)(170,430)(171,432)(172,431)(173,426)(174,425)(175,427)(176,428)
(177,445)(178,446)(179,448)(180,447)(181,442)(182,441)(183,443)(184,444)
(185,437)(186,438)(187,440)(188,439)(189,434)(190,433)(191,435)(192,436)
(193,485)(194,486)(195,488)(196,487)(197,482)(198,481)(199,483)(200,484)
(201,493)(202,494)(203,496)(204,495)(205,490)(206,489)(207,491)(208,492)
(209,509)(210,510)(211,512)(212,511)(213,506)(214,505)(215,507)(216,508)
(217,501)(218,502)(219,504)(220,503)(221,498)(222,497)(223,499)(224,500)
(225,549)(226,550)(227,552)(228,551)(229,546)(230,545)(231,547)(232,548)
(233,557)(234,558)(235,560)(236,559)(237,554)(238,553)(239,555)(240,556)
(241,573)(242,574)(243,576)(244,575)(245,570)(246,569)(247,571)(248,572)
(249,565)(250,566)(251,568)(252,567)(253,562)(254,561)(255,563)(256,564)
(257,517)(258,518)(259,520)(260,519)(261,514)(262,513)(263,515)(264,516)
(265,525)(266,526)(267,528)(268,527)(269,522)(270,521)(271,523)(272,524)
(273,541)(274,542)(275,544)(276,543)(277,538)(278,537)(279,539)(280,540)
(281,533)(282,534)(283,536)(284,535)(285,530)(286,529)(287,531)(288,532);;
s1 := ( 1,321)( 2,322)( 3,324)( 4,323)( 5,327)( 6,328)( 7,325)( 8,326)
( 9,345)( 10,346)( 11,348)( 12,347)( 13,351)( 14,352)( 15,349)( 16,350)
( 17,337)( 18,338)( 19,340)( 20,339)( 21,343)( 22,344)( 23,341)( 24,342)
( 25,329)( 26,330)( 27,332)( 28,331)( 29,335)( 30,336)( 31,333)( 32,334)
( 33,289)( 34,290)( 35,292)( 36,291)( 37,295)( 38,296)( 39,293)( 40,294)
( 41,313)( 42,314)( 43,316)( 44,315)( 45,319)( 46,320)( 47,317)( 48,318)
( 49,305)( 50,306)( 51,308)( 52,307)( 53,311)( 54,312)( 55,309)( 56,310)
( 57,297)( 58,298)( 59,300)( 60,299)( 61,303)( 62,304)( 63,301)( 64,302)
( 65,353)( 66,354)( 67,356)( 68,355)( 69,359)( 70,360)( 71,357)( 72,358)
( 73,377)( 74,378)( 75,380)( 76,379)( 77,383)( 78,384)( 79,381)( 80,382)
( 81,369)( 82,370)( 83,372)( 84,371)( 85,375)( 86,376)( 87,373)( 88,374)
( 89,361)( 90,362)( 91,364)( 92,363)( 93,367)( 94,368)( 95,365)( 96,366)
( 97,513)( 98,514)( 99,516)(100,515)(101,519)(102,520)(103,517)(104,518)
(105,537)(106,538)(107,540)(108,539)(109,543)(110,544)(111,541)(112,542)
(113,529)(114,530)(115,532)(116,531)(117,535)(118,536)(119,533)(120,534)
(121,521)(122,522)(123,524)(124,523)(125,527)(126,528)(127,525)(128,526)
(129,481)(130,482)(131,484)(132,483)(133,487)(134,488)(135,485)(136,486)
(137,505)(138,506)(139,508)(140,507)(141,511)(142,512)(143,509)(144,510)
(145,497)(146,498)(147,500)(148,499)(149,503)(150,504)(151,501)(152,502)
(153,489)(154,490)(155,492)(156,491)(157,495)(158,496)(159,493)(160,494)
(161,545)(162,546)(163,548)(164,547)(165,551)(166,552)(167,549)(168,550)
(169,569)(170,570)(171,572)(172,571)(173,575)(174,576)(175,573)(176,574)
(177,561)(178,562)(179,564)(180,563)(181,567)(182,568)(183,565)(184,566)
(185,553)(186,554)(187,556)(188,555)(189,559)(190,560)(191,557)(192,558)
(193,417)(194,418)(195,420)(196,419)(197,423)(198,424)(199,421)(200,422)
(201,441)(202,442)(203,444)(204,443)(205,447)(206,448)(207,445)(208,446)
(209,433)(210,434)(211,436)(212,435)(213,439)(214,440)(215,437)(216,438)
(217,425)(218,426)(219,428)(220,427)(221,431)(222,432)(223,429)(224,430)
(225,385)(226,386)(227,388)(228,387)(229,391)(230,392)(231,389)(232,390)
(233,409)(234,410)(235,412)(236,411)(237,415)(238,416)(239,413)(240,414)
(241,401)(242,402)(243,404)(244,403)(245,407)(246,408)(247,405)(248,406)
(249,393)(250,394)(251,396)(252,395)(253,399)(254,400)(255,397)(256,398)
(257,449)(258,450)(259,452)(260,451)(261,455)(262,456)(263,453)(264,454)
(265,473)(266,474)(267,476)(268,475)(269,479)(270,480)(271,477)(272,478)
(273,465)(274,466)(275,468)(276,467)(277,471)(278,472)(279,469)(280,470)
(281,457)(282,458)(283,460)(284,459)(285,463)(286,464)(287,461)(288,462);;
s2 := ( 1,105)( 2,106)( 3,111)( 4,112)( 5,110)( 6,109)( 7,107)( 8,108)
( 9, 97)( 10, 98)( 11,103)( 12,104)( 13,102)( 14,101)( 15, 99)( 16,100)
( 17,121)( 18,122)( 19,127)( 20,128)( 21,126)( 22,125)( 23,123)( 24,124)
( 25,113)( 26,114)( 27,119)( 28,120)( 29,118)( 30,117)( 31,115)( 32,116)
( 33,137)( 34,138)( 35,143)( 36,144)( 37,142)( 38,141)( 39,139)( 40,140)
( 41,129)( 42,130)( 43,135)( 44,136)( 45,134)( 46,133)( 47,131)( 48,132)
( 49,153)( 50,154)( 51,159)( 52,160)( 53,158)( 54,157)( 55,155)( 56,156)
( 57,145)( 58,146)( 59,151)( 60,152)( 61,150)( 62,149)( 63,147)( 64,148)
( 65,169)( 66,170)( 67,175)( 68,176)( 69,174)( 70,173)( 71,171)( 72,172)
( 73,161)( 74,162)( 75,167)( 76,168)( 77,166)( 78,165)( 79,163)( 80,164)
( 81,185)( 82,186)( 83,191)( 84,192)( 85,190)( 86,189)( 87,187)( 88,188)
( 89,177)( 90,178)( 91,183)( 92,184)( 93,182)( 94,181)( 95,179)( 96,180)
(193,201)(194,202)(195,207)(196,208)(197,206)(198,205)(199,203)(200,204)
(209,217)(210,218)(211,223)(212,224)(213,222)(214,221)(215,219)(216,220)
(225,233)(226,234)(227,239)(228,240)(229,238)(230,237)(231,235)(232,236)
(241,249)(242,250)(243,255)(244,256)(245,254)(246,253)(247,251)(248,252)
(257,265)(258,266)(259,271)(260,272)(261,270)(262,269)(263,267)(264,268)
(273,281)(274,282)(275,287)(276,288)(277,286)(278,285)(279,283)(280,284)
(289,394)(290,393)(291,400)(292,399)(293,397)(294,398)(295,396)(296,395)
(297,386)(298,385)(299,392)(300,391)(301,389)(302,390)(303,388)(304,387)
(305,410)(306,409)(307,416)(308,415)(309,413)(310,414)(311,412)(312,411)
(313,402)(314,401)(315,408)(316,407)(317,405)(318,406)(319,404)(320,403)
(321,426)(322,425)(323,432)(324,431)(325,429)(326,430)(327,428)(328,427)
(329,418)(330,417)(331,424)(332,423)(333,421)(334,422)(335,420)(336,419)
(337,442)(338,441)(339,448)(340,447)(341,445)(342,446)(343,444)(344,443)
(345,434)(346,433)(347,440)(348,439)(349,437)(350,438)(351,436)(352,435)
(353,458)(354,457)(355,464)(356,463)(357,461)(358,462)(359,460)(360,459)
(361,450)(362,449)(363,456)(364,455)(365,453)(366,454)(367,452)(368,451)
(369,474)(370,473)(371,480)(372,479)(373,477)(374,478)(375,476)(376,475)
(377,466)(378,465)(379,472)(380,471)(381,469)(382,470)(383,468)(384,467)
(481,490)(482,489)(483,496)(484,495)(485,493)(486,494)(487,492)(488,491)
(497,506)(498,505)(499,512)(500,511)(501,509)(502,510)(503,508)(504,507)
(513,522)(514,521)(515,528)(516,527)(517,525)(518,526)(519,524)(520,523)
(529,538)(530,537)(531,544)(532,543)(533,541)(534,542)(535,540)(536,539)
(545,554)(546,553)(547,560)(548,559)(549,557)(550,558)(551,556)(552,555)
(561,570)(562,569)(563,576)(564,575)(565,573)(566,574)(567,572)(568,571);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,293)( 2,294)( 3,296)( 4,295)( 5,290)( 6,289)( 7,291)
( 8,292)( 9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)
( 16,300)( 17,317)( 18,318)( 19,320)( 20,319)( 21,314)( 22,313)( 23,315)
( 24,316)( 25,309)( 26,310)( 27,312)( 28,311)( 29,306)( 30,305)( 31,307)
( 32,308)( 33,357)( 34,358)( 35,360)( 36,359)( 37,354)( 38,353)( 39,355)
( 40,356)( 41,365)( 42,366)( 43,368)( 44,367)( 45,362)( 46,361)( 47,363)
( 48,364)( 49,381)( 50,382)( 51,384)( 52,383)( 53,378)( 54,377)( 55,379)
( 56,380)( 57,373)( 58,374)( 59,376)( 60,375)( 61,370)( 62,369)( 63,371)
( 64,372)( 65,325)( 66,326)( 67,328)( 68,327)( 69,322)( 70,321)( 71,323)
( 72,324)( 73,333)( 74,334)( 75,336)( 76,335)( 77,330)( 78,329)( 79,331)
( 80,332)( 81,349)( 82,350)( 83,352)( 84,351)( 85,346)( 86,345)( 87,347)
( 88,348)( 89,341)( 90,342)( 91,344)( 92,343)( 93,338)( 94,337)( 95,339)
( 96,340)( 97,389)( 98,390)( 99,392)(100,391)(101,386)(102,385)(103,387)
(104,388)(105,397)(106,398)(107,400)(108,399)(109,394)(110,393)(111,395)
(112,396)(113,413)(114,414)(115,416)(116,415)(117,410)(118,409)(119,411)
(120,412)(121,405)(122,406)(123,408)(124,407)(125,402)(126,401)(127,403)
(128,404)(129,453)(130,454)(131,456)(132,455)(133,450)(134,449)(135,451)
(136,452)(137,461)(138,462)(139,464)(140,463)(141,458)(142,457)(143,459)
(144,460)(145,477)(146,478)(147,480)(148,479)(149,474)(150,473)(151,475)
(152,476)(153,469)(154,470)(155,472)(156,471)(157,466)(158,465)(159,467)
(160,468)(161,421)(162,422)(163,424)(164,423)(165,418)(166,417)(167,419)
(168,420)(169,429)(170,430)(171,432)(172,431)(173,426)(174,425)(175,427)
(176,428)(177,445)(178,446)(179,448)(180,447)(181,442)(182,441)(183,443)
(184,444)(185,437)(186,438)(187,440)(188,439)(189,434)(190,433)(191,435)
(192,436)(193,485)(194,486)(195,488)(196,487)(197,482)(198,481)(199,483)
(200,484)(201,493)(202,494)(203,496)(204,495)(205,490)(206,489)(207,491)
(208,492)(209,509)(210,510)(211,512)(212,511)(213,506)(214,505)(215,507)
(216,508)(217,501)(218,502)(219,504)(220,503)(221,498)(222,497)(223,499)
(224,500)(225,549)(226,550)(227,552)(228,551)(229,546)(230,545)(231,547)
(232,548)(233,557)(234,558)(235,560)(236,559)(237,554)(238,553)(239,555)
(240,556)(241,573)(242,574)(243,576)(244,575)(245,570)(246,569)(247,571)
(248,572)(249,565)(250,566)(251,568)(252,567)(253,562)(254,561)(255,563)
(256,564)(257,517)(258,518)(259,520)(260,519)(261,514)(262,513)(263,515)
(264,516)(265,525)(266,526)(267,528)(268,527)(269,522)(270,521)(271,523)
(272,524)(273,541)(274,542)(275,544)(276,543)(277,538)(278,537)(279,539)
(280,540)(281,533)(282,534)(283,536)(284,535)(285,530)(286,529)(287,531)
(288,532);
s1 := Sym(576)!( 1,321)( 2,322)( 3,324)( 4,323)( 5,327)( 6,328)( 7,325)
( 8,326)( 9,345)( 10,346)( 11,348)( 12,347)( 13,351)( 14,352)( 15,349)
( 16,350)( 17,337)( 18,338)( 19,340)( 20,339)( 21,343)( 22,344)( 23,341)
( 24,342)( 25,329)( 26,330)( 27,332)( 28,331)( 29,335)( 30,336)( 31,333)
( 32,334)( 33,289)( 34,290)( 35,292)( 36,291)( 37,295)( 38,296)( 39,293)
( 40,294)( 41,313)( 42,314)( 43,316)( 44,315)( 45,319)( 46,320)( 47,317)
( 48,318)( 49,305)( 50,306)( 51,308)( 52,307)( 53,311)( 54,312)( 55,309)
( 56,310)( 57,297)( 58,298)( 59,300)( 60,299)( 61,303)( 62,304)( 63,301)
( 64,302)( 65,353)( 66,354)( 67,356)( 68,355)( 69,359)( 70,360)( 71,357)
( 72,358)( 73,377)( 74,378)( 75,380)( 76,379)( 77,383)( 78,384)( 79,381)
( 80,382)( 81,369)( 82,370)( 83,372)( 84,371)( 85,375)( 86,376)( 87,373)
( 88,374)( 89,361)( 90,362)( 91,364)( 92,363)( 93,367)( 94,368)( 95,365)
( 96,366)( 97,513)( 98,514)( 99,516)(100,515)(101,519)(102,520)(103,517)
(104,518)(105,537)(106,538)(107,540)(108,539)(109,543)(110,544)(111,541)
(112,542)(113,529)(114,530)(115,532)(116,531)(117,535)(118,536)(119,533)
(120,534)(121,521)(122,522)(123,524)(124,523)(125,527)(126,528)(127,525)
(128,526)(129,481)(130,482)(131,484)(132,483)(133,487)(134,488)(135,485)
(136,486)(137,505)(138,506)(139,508)(140,507)(141,511)(142,512)(143,509)
(144,510)(145,497)(146,498)(147,500)(148,499)(149,503)(150,504)(151,501)
(152,502)(153,489)(154,490)(155,492)(156,491)(157,495)(158,496)(159,493)
(160,494)(161,545)(162,546)(163,548)(164,547)(165,551)(166,552)(167,549)
(168,550)(169,569)(170,570)(171,572)(172,571)(173,575)(174,576)(175,573)
(176,574)(177,561)(178,562)(179,564)(180,563)(181,567)(182,568)(183,565)
(184,566)(185,553)(186,554)(187,556)(188,555)(189,559)(190,560)(191,557)
(192,558)(193,417)(194,418)(195,420)(196,419)(197,423)(198,424)(199,421)
(200,422)(201,441)(202,442)(203,444)(204,443)(205,447)(206,448)(207,445)
(208,446)(209,433)(210,434)(211,436)(212,435)(213,439)(214,440)(215,437)
(216,438)(217,425)(218,426)(219,428)(220,427)(221,431)(222,432)(223,429)
(224,430)(225,385)(226,386)(227,388)(228,387)(229,391)(230,392)(231,389)
(232,390)(233,409)(234,410)(235,412)(236,411)(237,415)(238,416)(239,413)
(240,414)(241,401)(242,402)(243,404)(244,403)(245,407)(246,408)(247,405)
(248,406)(249,393)(250,394)(251,396)(252,395)(253,399)(254,400)(255,397)
(256,398)(257,449)(258,450)(259,452)(260,451)(261,455)(262,456)(263,453)
(264,454)(265,473)(266,474)(267,476)(268,475)(269,479)(270,480)(271,477)
(272,478)(273,465)(274,466)(275,468)(276,467)(277,471)(278,472)(279,469)
(280,470)(281,457)(282,458)(283,460)(284,459)(285,463)(286,464)(287,461)
(288,462);
s2 := Sym(576)!( 1,105)( 2,106)( 3,111)( 4,112)( 5,110)( 6,109)( 7,107)
( 8,108)( 9, 97)( 10, 98)( 11,103)( 12,104)( 13,102)( 14,101)( 15, 99)
( 16,100)( 17,121)( 18,122)( 19,127)( 20,128)( 21,126)( 22,125)( 23,123)
( 24,124)( 25,113)( 26,114)( 27,119)( 28,120)( 29,118)( 30,117)( 31,115)
( 32,116)( 33,137)( 34,138)( 35,143)( 36,144)( 37,142)( 38,141)( 39,139)
( 40,140)( 41,129)( 42,130)( 43,135)( 44,136)( 45,134)( 46,133)( 47,131)
( 48,132)( 49,153)( 50,154)( 51,159)( 52,160)( 53,158)( 54,157)( 55,155)
( 56,156)( 57,145)( 58,146)( 59,151)( 60,152)( 61,150)( 62,149)( 63,147)
( 64,148)( 65,169)( 66,170)( 67,175)( 68,176)( 69,174)( 70,173)( 71,171)
( 72,172)( 73,161)( 74,162)( 75,167)( 76,168)( 77,166)( 78,165)( 79,163)
( 80,164)( 81,185)( 82,186)( 83,191)( 84,192)( 85,190)( 86,189)( 87,187)
( 88,188)( 89,177)( 90,178)( 91,183)( 92,184)( 93,182)( 94,181)( 95,179)
( 96,180)(193,201)(194,202)(195,207)(196,208)(197,206)(198,205)(199,203)
(200,204)(209,217)(210,218)(211,223)(212,224)(213,222)(214,221)(215,219)
(216,220)(225,233)(226,234)(227,239)(228,240)(229,238)(230,237)(231,235)
(232,236)(241,249)(242,250)(243,255)(244,256)(245,254)(246,253)(247,251)
(248,252)(257,265)(258,266)(259,271)(260,272)(261,270)(262,269)(263,267)
(264,268)(273,281)(274,282)(275,287)(276,288)(277,286)(278,285)(279,283)
(280,284)(289,394)(290,393)(291,400)(292,399)(293,397)(294,398)(295,396)
(296,395)(297,386)(298,385)(299,392)(300,391)(301,389)(302,390)(303,388)
(304,387)(305,410)(306,409)(307,416)(308,415)(309,413)(310,414)(311,412)
(312,411)(313,402)(314,401)(315,408)(316,407)(317,405)(318,406)(319,404)
(320,403)(321,426)(322,425)(323,432)(324,431)(325,429)(326,430)(327,428)
(328,427)(329,418)(330,417)(331,424)(332,423)(333,421)(334,422)(335,420)
(336,419)(337,442)(338,441)(339,448)(340,447)(341,445)(342,446)(343,444)
(344,443)(345,434)(346,433)(347,440)(348,439)(349,437)(350,438)(351,436)
(352,435)(353,458)(354,457)(355,464)(356,463)(357,461)(358,462)(359,460)
(360,459)(361,450)(362,449)(363,456)(364,455)(365,453)(366,454)(367,452)
(368,451)(369,474)(370,473)(371,480)(372,479)(373,477)(374,478)(375,476)
(376,475)(377,466)(378,465)(379,472)(380,471)(381,469)(382,470)(383,468)
(384,467)(481,490)(482,489)(483,496)(484,495)(485,493)(486,494)(487,492)
(488,491)(497,506)(498,505)(499,512)(500,511)(501,509)(502,510)(503,508)
(504,507)(513,522)(514,521)(515,528)(516,527)(517,525)(518,526)(519,524)
(520,523)(529,538)(530,537)(531,544)(532,543)(533,541)(534,542)(535,540)
(536,539)(545,554)(546,553)(547,560)(548,559)(549,557)(550,558)(551,556)
(552,555)(561,570)(562,569)(563,576)(564,575)(565,573)(566,574)(567,572)
(568,571);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope