Polytope of Type {12,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12}*576l
if this polytope has a name.
Group : SmallGroup(576,8653)
Rank : 3
Schlafli Type : {12,12}
Number of vertices, edges, etc : 24, 144, 24
Order of s0s1s2 : 3
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {12,12,2} of size 1152
Vertex Figure Of :
   {2,12,12} of size 1152
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {6,12}*144d, {12,6}*144d
   12-fold quotients : {4,6}*48b, {6,4}*48b
   24-fold quotients : {3,4}*24, {4,3}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,24}*1152y, {12,24}*1152z, {24,12}*1152y, {24,12}*1152z, {12,12}*1152t
   3-fold covers : {12,36}*1728i, {36,12}*1728i, {12,12}*1728u
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,11)( 3,10)( 4,12)( 5,13)( 6,15)( 7,14)( 8,16);;
s1 := ( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(14,16);;
s2 := ( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!( 1, 9)( 2,11)( 3,10)( 4,12)( 5,13)( 6,15)( 7,14)( 8,16);
s1 := Sym(16)!( 2, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(14,16);
s2 := Sym(16)!( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11);
poly := sub<Sym(16)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope