Polytope of Type {24,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,12}*1152z
if this polytope has a name.
Group : SmallGroup(1152,157458)
Rank : 3
Schlafli Type : {24,12}
Number of vertices, edges, etc : 48, 288, 24
Order of s0s1s2 : 3
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,12}*576l
   8-fold quotients : {6,12}*144d, {12,6}*144d
   24-fold quotients : {4,6}*48b, {6,4}*48b
   48-fold quotients : {3,4}*24, {4,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,293)(  2,294)(  3,296)(  4,295)(  5,290)(  6,289)(  7,291)(  8,292)
(  9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)( 16,300)
( 17,317)( 18,318)( 19,320)( 20,319)( 21,314)( 22,313)( 23,315)( 24,316)
( 25,309)( 26,310)( 27,312)( 28,311)( 29,306)( 30,305)( 31,307)( 32,308)
( 33,357)( 34,358)( 35,360)( 36,359)( 37,354)( 38,353)( 39,355)( 40,356)
( 41,365)( 42,366)( 43,368)( 44,367)( 45,362)( 46,361)( 47,363)( 48,364)
( 49,381)( 50,382)( 51,384)( 52,383)( 53,378)( 54,377)( 55,379)( 56,380)
( 57,373)( 58,374)( 59,376)( 60,375)( 61,370)( 62,369)( 63,371)( 64,372)
( 65,325)( 66,326)( 67,328)( 68,327)( 69,322)( 70,321)( 71,323)( 72,324)
( 73,333)( 74,334)( 75,336)( 76,335)( 77,330)( 78,329)( 79,331)( 80,332)
( 81,349)( 82,350)( 83,352)( 84,351)( 85,346)( 86,345)( 87,347)( 88,348)
( 89,341)( 90,342)( 91,344)( 92,343)( 93,338)( 94,337)( 95,339)( 96,340)
( 97,389)( 98,390)( 99,392)(100,391)(101,386)(102,385)(103,387)(104,388)
(105,397)(106,398)(107,400)(108,399)(109,394)(110,393)(111,395)(112,396)
(113,413)(114,414)(115,416)(116,415)(117,410)(118,409)(119,411)(120,412)
(121,405)(122,406)(123,408)(124,407)(125,402)(126,401)(127,403)(128,404)
(129,453)(130,454)(131,456)(132,455)(133,450)(134,449)(135,451)(136,452)
(137,461)(138,462)(139,464)(140,463)(141,458)(142,457)(143,459)(144,460)
(145,477)(146,478)(147,480)(148,479)(149,474)(150,473)(151,475)(152,476)
(153,469)(154,470)(155,472)(156,471)(157,466)(158,465)(159,467)(160,468)
(161,421)(162,422)(163,424)(164,423)(165,418)(166,417)(167,419)(168,420)
(169,429)(170,430)(171,432)(172,431)(173,426)(174,425)(175,427)(176,428)
(177,445)(178,446)(179,448)(180,447)(181,442)(182,441)(183,443)(184,444)
(185,437)(186,438)(187,440)(188,439)(189,434)(190,433)(191,435)(192,436)
(193,485)(194,486)(195,488)(196,487)(197,482)(198,481)(199,483)(200,484)
(201,493)(202,494)(203,496)(204,495)(205,490)(206,489)(207,491)(208,492)
(209,509)(210,510)(211,512)(212,511)(213,506)(214,505)(215,507)(216,508)
(217,501)(218,502)(219,504)(220,503)(221,498)(222,497)(223,499)(224,500)
(225,549)(226,550)(227,552)(228,551)(229,546)(230,545)(231,547)(232,548)
(233,557)(234,558)(235,560)(236,559)(237,554)(238,553)(239,555)(240,556)
(241,573)(242,574)(243,576)(244,575)(245,570)(246,569)(247,571)(248,572)
(249,565)(250,566)(251,568)(252,567)(253,562)(254,561)(255,563)(256,564)
(257,517)(258,518)(259,520)(260,519)(261,514)(262,513)(263,515)(264,516)
(265,525)(266,526)(267,528)(268,527)(269,522)(270,521)(271,523)(272,524)
(273,541)(274,542)(275,544)(276,543)(277,538)(278,537)(279,539)(280,540)
(281,533)(282,534)(283,536)(284,535)(285,530)(286,529)(287,531)(288,532);;
s1 := (  1,321)(  2,322)(  3,324)(  4,323)(  5,327)(  6,328)(  7,325)(  8,326)
(  9,345)( 10,346)( 11,348)( 12,347)( 13,351)( 14,352)( 15,349)( 16,350)
( 17,337)( 18,338)( 19,340)( 20,339)( 21,343)( 22,344)( 23,341)( 24,342)
( 25,329)( 26,330)( 27,332)( 28,331)( 29,335)( 30,336)( 31,333)( 32,334)
( 33,289)( 34,290)( 35,292)( 36,291)( 37,295)( 38,296)( 39,293)( 40,294)
( 41,313)( 42,314)( 43,316)( 44,315)( 45,319)( 46,320)( 47,317)( 48,318)
( 49,305)( 50,306)( 51,308)( 52,307)( 53,311)( 54,312)( 55,309)( 56,310)
( 57,297)( 58,298)( 59,300)( 60,299)( 61,303)( 62,304)( 63,301)( 64,302)
( 65,353)( 66,354)( 67,356)( 68,355)( 69,359)( 70,360)( 71,357)( 72,358)
( 73,377)( 74,378)( 75,380)( 76,379)( 77,383)( 78,384)( 79,381)( 80,382)
( 81,369)( 82,370)( 83,372)( 84,371)( 85,375)( 86,376)( 87,373)( 88,374)
( 89,361)( 90,362)( 91,364)( 92,363)( 93,367)( 94,368)( 95,365)( 96,366)
( 97,513)( 98,514)( 99,516)(100,515)(101,519)(102,520)(103,517)(104,518)
(105,537)(106,538)(107,540)(108,539)(109,543)(110,544)(111,541)(112,542)
(113,529)(114,530)(115,532)(116,531)(117,535)(118,536)(119,533)(120,534)
(121,521)(122,522)(123,524)(124,523)(125,527)(126,528)(127,525)(128,526)
(129,481)(130,482)(131,484)(132,483)(133,487)(134,488)(135,485)(136,486)
(137,505)(138,506)(139,508)(140,507)(141,511)(142,512)(143,509)(144,510)
(145,497)(146,498)(147,500)(148,499)(149,503)(150,504)(151,501)(152,502)
(153,489)(154,490)(155,492)(156,491)(157,495)(158,496)(159,493)(160,494)
(161,545)(162,546)(163,548)(164,547)(165,551)(166,552)(167,549)(168,550)
(169,569)(170,570)(171,572)(172,571)(173,575)(174,576)(175,573)(176,574)
(177,561)(178,562)(179,564)(180,563)(181,567)(182,568)(183,565)(184,566)
(185,553)(186,554)(187,556)(188,555)(189,559)(190,560)(191,557)(192,558)
(193,417)(194,418)(195,420)(196,419)(197,423)(198,424)(199,421)(200,422)
(201,441)(202,442)(203,444)(204,443)(205,447)(206,448)(207,445)(208,446)
(209,433)(210,434)(211,436)(212,435)(213,439)(214,440)(215,437)(216,438)
(217,425)(218,426)(219,428)(220,427)(221,431)(222,432)(223,429)(224,430)
(225,385)(226,386)(227,388)(228,387)(229,391)(230,392)(231,389)(232,390)
(233,409)(234,410)(235,412)(236,411)(237,415)(238,416)(239,413)(240,414)
(241,401)(242,402)(243,404)(244,403)(245,407)(246,408)(247,405)(248,406)
(249,393)(250,394)(251,396)(252,395)(253,399)(254,400)(255,397)(256,398)
(257,449)(258,450)(259,452)(260,451)(261,455)(262,456)(263,453)(264,454)
(265,473)(266,474)(267,476)(268,475)(269,479)(270,480)(271,477)(272,478)
(273,465)(274,466)(275,468)(276,467)(277,471)(278,472)(279,469)(280,470)
(281,457)(282,458)(283,460)(284,459)(285,463)(286,464)(287,461)(288,462);;
s2 := (  1,106)(  2,105)(  3,112)(  4,111)(  5,109)(  6,110)(  7,108)(  8,107)
(  9, 98)( 10, 97)( 11,104)( 12,103)( 13,101)( 14,102)( 15,100)( 16, 99)
( 17,122)( 18,121)( 19,128)( 20,127)( 21,125)( 22,126)( 23,124)( 24,123)
( 25,114)( 26,113)( 27,120)( 28,119)( 29,117)( 30,118)( 31,116)( 32,115)
( 33,138)( 34,137)( 35,144)( 36,143)( 37,141)( 38,142)( 39,140)( 40,139)
( 41,130)( 42,129)( 43,136)( 44,135)( 45,133)( 46,134)( 47,132)( 48,131)
( 49,154)( 50,153)( 51,160)( 52,159)( 53,157)( 54,158)( 55,156)( 56,155)
( 57,146)( 58,145)( 59,152)( 60,151)( 61,149)( 62,150)( 63,148)( 64,147)
( 65,170)( 66,169)( 67,176)( 68,175)( 69,173)( 70,174)( 71,172)( 72,171)
( 73,162)( 74,161)( 75,168)( 76,167)( 77,165)( 78,166)( 79,164)( 80,163)
( 81,186)( 82,185)( 83,192)( 84,191)( 85,189)( 86,190)( 87,188)( 88,187)
( 89,178)( 90,177)( 91,184)( 92,183)( 93,181)( 94,182)( 95,180)( 96,179)
(193,202)(194,201)(195,208)(196,207)(197,205)(198,206)(199,204)(200,203)
(209,218)(210,217)(211,224)(212,223)(213,221)(214,222)(215,220)(216,219)
(225,234)(226,233)(227,240)(228,239)(229,237)(230,238)(231,236)(232,235)
(241,250)(242,249)(243,256)(244,255)(245,253)(246,254)(247,252)(248,251)
(257,266)(258,265)(259,272)(260,271)(261,269)(262,270)(263,268)(264,267)
(273,282)(274,281)(275,288)(276,287)(277,285)(278,286)(279,284)(280,283)
(289,393)(290,394)(291,399)(292,400)(293,398)(294,397)(295,395)(296,396)
(297,385)(298,386)(299,391)(300,392)(301,390)(302,389)(303,387)(304,388)
(305,409)(306,410)(307,415)(308,416)(309,414)(310,413)(311,411)(312,412)
(313,401)(314,402)(315,407)(316,408)(317,406)(318,405)(319,403)(320,404)
(321,425)(322,426)(323,431)(324,432)(325,430)(326,429)(327,427)(328,428)
(329,417)(330,418)(331,423)(332,424)(333,422)(334,421)(335,419)(336,420)
(337,441)(338,442)(339,447)(340,448)(341,446)(342,445)(343,443)(344,444)
(345,433)(346,434)(347,439)(348,440)(349,438)(350,437)(351,435)(352,436)
(353,457)(354,458)(355,463)(356,464)(357,462)(358,461)(359,459)(360,460)
(361,449)(362,450)(363,455)(364,456)(365,454)(366,453)(367,451)(368,452)
(369,473)(370,474)(371,479)(372,480)(373,478)(374,477)(375,475)(376,476)
(377,465)(378,466)(379,471)(380,472)(381,470)(382,469)(383,467)(384,468)
(481,489)(482,490)(483,495)(484,496)(485,494)(486,493)(487,491)(488,492)
(497,505)(498,506)(499,511)(500,512)(501,510)(502,509)(503,507)(504,508)
(513,521)(514,522)(515,527)(516,528)(517,526)(518,525)(519,523)(520,524)
(529,537)(530,538)(531,543)(532,544)(533,542)(534,541)(535,539)(536,540)
(545,553)(546,554)(547,559)(548,560)(549,558)(550,557)(551,555)(552,556)
(561,569)(562,570)(563,575)(564,576)(565,574)(566,573)(567,571)(568,572);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,293)(  2,294)(  3,296)(  4,295)(  5,290)(  6,289)(  7,291)
(  8,292)(  9,301)( 10,302)( 11,304)( 12,303)( 13,298)( 14,297)( 15,299)
( 16,300)( 17,317)( 18,318)( 19,320)( 20,319)( 21,314)( 22,313)( 23,315)
( 24,316)( 25,309)( 26,310)( 27,312)( 28,311)( 29,306)( 30,305)( 31,307)
( 32,308)( 33,357)( 34,358)( 35,360)( 36,359)( 37,354)( 38,353)( 39,355)
( 40,356)( 41,365)( 42,366)( 43,368)( 44,367)( 45,362)( 46,361)( 47,363)
( 48,364)( 49,381)( 50,382)( 51,384)( 52,383)( 53,378)( 54,377)( 55,379)
( 56,380)( 57,373)( 58,374)( 59,376)( 60,375)( 61,370)( 62,369)( 63,371)
( 64,372)( 65,325)( 66,326)( 67,328)( 68,327)( 69,322)( 70,321)( 71,323)
( 72,324)( 73,333)( 74,334)( 75,336)( 76,335)( 77,330)( 78,329)( 79,331)
( 80,332)( 81,349)( 82,350)( 83,352)( 84,351)( 85,346)( 86,345)( 87,347)
( 88,348)( 89,341)( 90,342)( 91,344)( 92,343)( 93,338)( 94,337)( 95,339)
( 96,340)( 97,389)( 98,390)( 99,392)(100,391)(101,386)(102,385)(103,387)
(104,388)(105,397)(106,398)(107,400)(108,399)(109,394)(110,393)(111,395)
(112,396)(113,413)(114,414)(115,416)(116,415)(117,410)(118,409)(119,411)
(120,412)(121,405)(122,406)(123,408)(124,407)(125,402)(126,401)(127,403)
(128,404)(129,453)(130,454)(131,456)(132,455)(133,450)(134,449)(135,451)
(136,452)(137,461)(138,462)(139,464)(140,463)(141,458)(142,457)(143,459)
(144,460)(145,477)(146,478)(147,480)(148,479)(149,474)(150,473)(151,475)
(152,476)(153,469)(154,470)(155,472)(156,471)(157,466)(158,465)(159,467)
(160,468)(161,421)(162,422)(163,424)(164,423)(165,418)(166,417)(167,419)
(168,420)(169,429)(170,430)(171,432)(172,431)(173,426)(174,425)(175,427)
(176,428)(177,445)(178,446)(179,448)(180,447)(181,442)(182,441)(183,443)
(184,444)(185,437)(186,438)(187,440)(188,439)(189,434)(190,433)(191,435)
(192,436)(193,485)(194,486)(195,488)(196,487)(197,482)(198,481)(199,483)
(200,484)(201,493)(202,494)(203,496)(204,495)(205,490)(206,489)(207,491)
(208,492)(209,509)(210,510)(211,512)(212,511)(213,506)(214,505)(215,507)
(216,508)(217,501)(218,502)(219,504)(220,503)(221,498)(222,497)(223,499)
(224,500)(225,549)(226,550)(227,552)(228,551)(229,546)(230,545)(231,547)
(232,548)(233,557)(234,558)(235,560)(236,559)(237,554)(238,553)(239,555)
(240,556)(241,573)(242,574)(243,576)(244,575)(245,570)(246,569)(247,571)
(248,572)(249,565)(250,566)(251,568)(252,567)(253,562)(254,561)(255,563)
(256,564)(257,517)(258,518)(259,520)(260,519)(261,514)(262,513)(263,515)
(264,516)(265,525)(266,526)(267,528)(268,527)(269,522)(270,521)(271,523)
(272,524)(273,541)(274,542)(275,544)(276,543)(277,538)(278,537)(279,539)
(280,540)(281,533)(282,534)(283,536)(284,535)(285,530)(286,529)(287,531)
(288,532);
s1 := Sym(576)!(  1,321)(  2,322)(  3,324)(  4,323)(  5,327)(  6,328)(  7,325)
(  8,326)(  9,345)( 10,346)( 11,348)( 12,347)( 13,351)( 14,352)( 15,349)
( 16,350)( 17,337)( 18,338)( 19,340)( 20,339)( 21,343)( 22,344)( 23,341)
( 24,342)( 25,329)( 26,330)( 27,332)( 28,331)( 29,335)( 30,336)( 31,333)
( 32,334)( 33,289)( 34,290)( 35,292)( 36,291)( 37,295)( 38,296)( 39,293)
( 40,294)( 41,313)( 42,314)( 43,316)( 44,315)( 45,319)( 46,320)( 47,317)
( 48,318)( 49,305)( 50,306)( 51,308)( 52,307)( 53,311)( 54,312)( 55,309)
( 56,310)( 57,297)( 58,298)( 59,300)( 60,299)( 61,303)( 62,304)( 63,301)
( 64,302)( 65,353)( 66,354)( 67,356)( 68,355)( 69,359)( 70,360)( 71,357)
( 72,358)( 73,377)( 74,378)( 75,380)( 76,379)( 77,383)( 78,384)( 79,381)
( 80,382)( 81,369)( 82,370)( 83,372)( 84,371)( 85,375)( 86,376)( 87,373)
( 88,374)( 89,361)( 90,362)( 91,364)( 92,363)( 93,367)( 94,368)( 95,365)
( 96,366)( 97,513)( 98,514)( 99,516)(100,515)(101,519)(102,520)(103,517)
(104,518)(105,537)(106,538)(107,540)(108,539)(109,543)(110,544)(111,541)
(112,542)(113,529)(114,530)(115,532)(116,531)(117,535)(118,536)(119,533)
(120,534)(121,521)(122,522)(123,524)(124,523)(125,527)(126,528)(127,525)
(128,526)(129,481)(130,482)(131,484)(132,483)(133,487)(134,488)(135,485)
(136,486)(137,505)(138,506)(139,508)(140,507)(141,511)(142,512)(143,509)
(144,510)(145,497)(146,498)(147,500)(148,499)(149,503)(150,504)(151,501)
(152,502)(153,489)(154,490)(155,492)(156,491)(157,495)(158,496)(159,493)
(160,494)(161,545)(162,546)(163,548)(164,547)(165,551)(166,552)(167,549)
(168,550)(169,569)(170,570)(171,572)(172,571)(173,575)(174,576)(175,573)
(176,574)(177,561)(178,562)(179,564)(180,563)(181,567)(182,568)(183,565)
(184,566)(185,553)(186,554)(187,556)(188,555)(189,559)(190,560)(191,557)
(192,558)(193,417)(194,418)(195,420)(196,419)(197,423)(198,424)(199,421)
(200,422)(201,441)(202,442)(203,444)(204,443)(205,447)(206,448)(207,445)
(208,446)(209,433)(210,434)(211,436)(212,435)(213,439)(214,440)(215,437)
(216,438)(217,425)(218,426)(219,428)(220,427)(221,431)(222,432)(223,429)
(224,430)(225,385)(226,386)(227,388)(228,387)(229,391)(230,392)(231,389)
(232,390)(233,409)(234,410)(235,412)(236,411)(237,415)(238,416)(239,413)
(240,414)(241,401)(242,402)(243,404)(244,403)(245,407)(246,408)(247,405)
(248,406)(249,393)(250,394)(251,396)(252,395)(253,399)(254,400)(255,397)
(256,398)(257,449)(258,450)(259,452)(260,451)(261,455)(262,456)(263,453)
(264,454)(265,473)(266,474)(267,476)(268,475)(269,479)(270,480)(271,477)
(272,478)(273,465)(274,466)(275,468)(276,467)(277,471)(278,472)(279,469)
(280,470)(281,457)(282,458)(283,460)(284,459)(285,463)(286,464)(287,461)
(288,462);
s2 := Sym(576)!(  1,106)(  2,105)(  3,112)(  4,111)(  5,109)(  6,110)(  7,108)
(  8,107)(  9, 98)( 10, 97)( 11,104)( 12,103)( 13,101)( 14,102)( 15,100)
( 16, 99)( 17,122)( 18,121)( 19,128)( 20,127)( 21,125)( 22,126)( 23,124)
( 24,123)( 25,114)( 26,113)( 27,120)( 28,119)( 29,117)( 30,118)( 31,116)
( 32,115)( 33,138)( 34,137)( 35,144)( 36,143)( 37,141)( 38,142)( 39,140)
( 40,139)( 41,130)( 42,129)( 43,136)( 44,135)( 45,133)( 46,134)( 47,132)
( 48,131)( 49,154)( 50,153)( 51,160)( 52,159)( 53,157)( 54,158)( 55,156)
( 56,155)( 57,146)( 58,145)( 59,152)( 60,151)( 61,149)( 62,150)( 63,148)
( 64,147)( 65,170)( 66,169)( 67,176)( 68,175)( 69,173)( 70,174)( 71,172)
( 72,171)( 73,162)( 74,161)( 75,168)( 76,167)( 77,165)( 78,166)( 79,164)
( 80,163)( 81,186)( 82,185)( 83,192)( 84,191)( 85,189)( 86,190)( 87,188)
( 88,187)( 89,178)( 90,177)( 91,184)( 92,183)( 93,181)( 94,182)( 95,180)
( 96,179)(193,202)(194,201)(195,208)(196,207)(197,205)(198,206)(199,204)
(200,203)(209,218)(210,217)(211,224)(212,223)(213,221)(214,222)(215,220)
(216,219)(225,234)(226,233)(227,240)(228,239)(229,237)(230,238)(231,236)
(232,235)(241,250)(242,249)(243,256)(244,255)(245,253)(246,254)(247,252)
(248,251)(257,266)(258,265)(259,272)(260,271)(261,269)(262,270)(263,268)
(264,267)(273,282)(274,281)(275,288)(276,287)(277,285)(278,286)(279,284)
(280,283)(289,393)(290,394)(291,399)(292,400)(293,398)(294,397)(295,395)
(296,396)(297,385)(298,386)(299,391)(300,392)(301,390)(302,389)(303,387)
(304,388)(305,409)(306,410)(307,415)(308,416)(309,414)(310,413)(311,411)
(312,412)(313,401)(314,402)(315,407)(316,408)(317,406)(318,405)(319,403)
(320,404)(321,425)(322,426)(323,431)(324,432)(325,430)(326,429)(327,427)
(328,428)(329,417)(330,418)(331,423)(332,424)(333,422)(334,421)(335,419)
(336,420)(337,441)(338,442)(339,447)(340,448)(341,446)(342,445)(343,443)
(344,444)(345,433)(346,434)(347,439)(348,440)(349,438)(350,437)(351,435)
(352,436)(353,457)(354,458)(355,463)(356,464)(357,462)(358,461)(359,459)
(360,460)(361,449)(362,450)(363,455)(364,456)(365,454)(366,453)(367,451)
(368,452)(369,473)(370,474)(371,479)(372,480)(373,478)(374,477)(375,475)
(376,476)(377,465)(378,466)(379,471)(380,472)(381,470)(382,469)(383,467)
(384,468)(481,489)(482,490)(483,495)(484,496)(485,494)(486,493)(487,491)
(488,492)(497,505)(498,506)(499,511)(500,512)(501,510)(502,509)(503,507)
(504,508)(513,521)(514,522)(515,527)(516,528)(517,526)(518,525)(519,523)
(520,524)(529,537)(530,538)(531,543)(532,544)(533,542)(534,541)(535,539)
(536,540)(545,553)(546,554)(547,559)(548,560)(549,558)(550,557)(551,555)
(552,556)(561,569)(562,570)(563,575)(564,576)(565,574)(566,573)(567,571)
(568,572);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope