Polytope of Type {2,4,12,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12,6}*1152g
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 5
Schlafli Type : {2,4,12,6}
Number of vertices, edges, etc : 2, 4, 24, 36, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,6,6}*576e
   3-fold quotients : {2,4,12,2}*384c
   4-fold quotients : {2,4,3,6}*288
   6-fold quotients : {2,4,6,2}*192c
   12-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 41)(  4, 42)(  5, 39)(  6, 40)(  7, 45)(  8, 46)(  9, 43)( 10, 44)
( 11, 49)( 12, 50)( 13, 47)( 14, 48)( 15, 53)( 16, 54)( 17, 51)( 18, 52)
( 19, 57)( 20, 58)( 21, 55)( 22, 56)( 23, 61)( 24, 62)( 25, 59)( 26, 60)
( 27, 65)( 28, 66)( 29, 63)( 30, 64)( 31, 69)( 32, 70)( 33, 67)( 34, 68)
( 35, 73)( 36, 74)( 37, 71)( 38, 72)( 75,113)( 76,114)( 77,111)( 78,112)
( 79,117)( 80,118)( 81,115)( 82,116)( 83,121)( 84,122)( 85,119)( 86,120)
( 87,125)( 88,126)( 89,123)( 90,124)( 91,129)( 92,130)( 93,127)( 94,128)
( 95,133)( 96,134)( 97,131)( 98,132)( 99,137)(100,138)(101,135)(102,136)
(103,141)(104,142)(105,139)(106,140)(107,145)(108,146)(109,143)(110,144);;
s2 := (  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 27)( 16, 29)( 17, 28)
( 18, 30)( 19, 35)( 20, 37)( 21, 36)( 22, 38)( 23, 31)( 24, 33)( 25, 32)
( 26, 34)( 40, 41)( 43, 47)( 44, 49)( 45, 48)( 46, 50)( 51, 63)( 52, 65)
( 53, 64)( 54, 66)( 55, 71)( 56, 73)( 57, 72)( 58, 74)( 59, 67)( 60, 69)
( 61, 68)( 62, 70)( 75,111)( 76,113)( 77,112)( 78,114)( 79,119)( 80,121)
( 81,120)( 82,122)( 83,115)( 84,117)( 85,116)( 86,118)( 87,135)( 88,137)
( 89,136)( 90,138)( 91,143)( 92,145)( 93,144)( 94,146)( 95,139)( 96,141)
( 97,140)( 98,142)( 99,123)(100,125)(101,124)(102,126)(103,131)(104,133)
(105,132)(106,134)(107,127)(108,129)(109,128)(110,130);;
s3 := (  3,103)(  4,106)(  5,105)(  6,104)(  7, 99)(  8,102)(  9,101)( 10,100)
( 11,107)( 12,110)( 13,109)( 14,108)( 15, 91)( 16, 94)( 17, 93)( 18, 92)
( 19, 87)( 20, 90)( 21, 89)( 22, 88)( 23, 95)( 24, 98)( 25, 97)( 26, 96)
( 27, 79)( 28, 82)( 29, 81)( 30, 80)( 31, 75)( 32, 78)( 33, 77)( 34, 76)
( 35, 83)( 36, 86)( 37, 85)( 38, 84)( 39,139)( 40,142)( 41,141)( 42,140)
( 43,135)( 44,138)( 45,137)( 46,136)( 47,143)( 48,146)( 49,145)( 50,144)
( 51,127)( 52,130)( 53,129)( 54,128)( 55,123)( 56,126)( 57,125)( 58,124)
( 59,131)( 60,134)( 61,133)( 62,132)( 63,115)( 64,118)( 65,117)( 66,116)
( 67,111)( 68,114)( 69,113)( 70,112)( 71,119)( 72,122)( 73,121)( 74,120);;
s4 := (  7, 11)(  8, 12)(  9, 13)( 10, 14)( 19, 23)( 20, 24)( 21, 25)( 22, 26)
( 31, 35)( 32, 36)( 33, 37)( 34, 38)( 43, 47)( 44, 48)( 45, 49)( 46, 50)
( 55, 59)( 56, 60)( 57, 61)( 58, 62)( 67, 71)( 68, 72)( 69, 73)( 70, 74)
( 79, 83)( 80, 84)( 81, 85)( 82, 86)( 91, 95)( 92, 96)( 93, 97)( 94, 98)
(103,107)(104,108)(105,109)(106,110)(115,119)(116,120)(117,121)(118,122)
(127,131)(128,132)(129,133)(130,134)(139,143)(140,144)(141,145)(142,146);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  3, 41)(  4, 42)(  5, 39)(  6, 40)(  7, 45)(  8, 46)(  9, 43)
( 10, 44)( 11, 49)( 12, 50)( 13, 47)( 14, 48)( 15, 53)( 16, 54)( 17, 51)
( 18, 52)( 19, 57)( 20, 58)( 21, 55)( 22, 56)( 23, 61)( 24, 62)( 25, 59)
( 26, 60)( 27, 65)( 28, 66)( 29, 63)( 30, 64)( 31, 69)( 32, 70)( 33, 67)
( 34, 68)( 35, 73)( 36, 74)( 37, 71)( 38, 72)( 75,113)( 76,114)( 77,111)
( 78,112)( 79,117)( 80,118)( 81,115)( 82,116)( 83,121)( 84,122)( 85,119)
( 86,120)( 87,125)( 88,126)( 89,123)( 90,124)( 91,129)( 92,130)( 93,127)
( 94,128)( 95,133)( 96,134)( 97,131)( 98,132)( 99,137)(100,138)(101,135)
(102,136)(103,141)(104,142)(105,139)(106,140)(107,145)(108,146)(109,143)
(110,144);
s2 := Sym(146)!(  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 27)( 16, 29)
( 17, 28)( 18, 30)( 19, 35)( 20, 37)( 21, 36)( 22, 38)( 23, 31)( 24, 33)
( 25, 32)( 26, 34)( 40, 41)( 43, 47)( 44, 49)( 45, 48)( 46, 50)( 51, 63)
( 52, 65)( 53, 64)( 54, 66)( 55, 71)( 56, 73)( 57, 72)( 58, 74)( 59, 67)
( 60, 69)( 61, 68)( 62, 70)( 75,111)( 76,113)( 77,112)( 78,114)( 79,119)
( 80,121)( 81,120)( 82,122)( 83,115)( 84,117)( 85,116)( 86,118)( 87,135)
( 88,137)( 89,136)( 90,138)( 91,143)( 92,145)( 93,144)( 94,146)( 95,139)
( 96,141)( 97,140)( 98,142)( 99,123)(100,125)(101,124)(102,126)(103,131)
(104,133)(105,132)(106,134)(107,127)(108,129)(109,128)(110,130);
s3 := Sym(146)!(  3,103)(  4,106)(  5,105)(  6,104)(  7, 99)(  8,102)(  9,101)
( 10,100)( 11,107)( 12,110)( 13,109)( 14,108)( 15, 91)( 16, 94)( 17, 93)
( 18, 92)( 19, 87)( 20, 90)( 21, 89)( 22, 88)( 23, 95)( 24, 98)( 25, 97)
( 26, 96)( 27, 79)( 28, 82)( 29, 81)( 30, 80)( 31, 75)( 32, 78)( 33, 77)
( 34, 76)( 35, 83)( 36, 86)( 37, 85)( 38, 84)( 39,139)( 40,142)( 41,141)
( 42,140)( 43,135)( 44,138)( 45,137)( 46,136)( 47,143)( 48,146)( 49,145)
( 50,144)( 51,127)( 52,130)( 53,129)( 54,128)( 55,123)( 56,126)( 57,125)
( 58,124)( 59,131)( 60,134)( 61,133)( 62,132)( 63,115)( 64,118)( 65,117)
( 66,116)( 67,111)( 68,114)( 69,113)( 70,112)( 71,119)( 72,122)( 73,121)
( 74,120);
s4 := Sym(146)!(  7, 11)(  8, 12)(  9, 13)( 10, 14)( 19, 23)( 20, 24)( 21, 25)
( 22, 26)( 31, 35)( 32, 36)( 33, 37)( 34, 38)( 43, 47)( 44, 48)( 45, 49)
( 46, 50)( 55, 59)( 56, 60)( 57, 61)( 58, 62)( 67, 71)( 68, 72)( 69, 73)
( 70, 74)( 79, 83)( 80, 84)( 81, 85)( 82, 86)( 91, 95)( 92, 96)( 93, 97)
( 94, 98)(103,107)(104,108)(105,109)(106,110)(115,119)(116,120)(117,121)
(118,122)(127,131)(128,132)(129,133)(130,134)(139,143)(140,144)(141,145)
(142,146);
poly := sub<Sym(146)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2 >; 
 

to this polytope