include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*1152f
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 24, 144, 24, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,6,2}*576a
3-fold quotients : {4,12,2}*384b
4-fold quotients : {6,12,2}*288a, {12,6,2}*288d
6-fold quotients : {4,12,2}*192b, {4,12,2}*192c, {4,6,2}*192
8-fold quotients : {6,6,2}*144a
12-fold quotients : {2,12,2}*96, {6,4,2}*96a, {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
24-fold quotients : {4,3,2}*48, {2,6,2}*48, {6,2,2}*48
36-fold quotients : {2,4,2}*32
48-fold quotients : {2,3,2}*24, {3,2,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 11)( 6, 12)( 7, 9)( 8, 10)( 13, 15)( 14, 16)
( 17, 23)( 18, 24)( 19, 21)( 20, 22)( 25, 27)( 26, 28)( 29, 35)( 30, 36)
( 31, 33)( 32, 34)( 37, 39)( 38, 40)( 41, 47)( 42, 48)( 43, 45)( 44, 46)
( 49, 51)( 50, 52)( 53, 59)( 54, 60)( 55, 57)( 56, 58)( 61, 63)( 62, 64)
( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 75)( 74, 76)( 77, 83)( 78, 84)
( 79, 81)( 80, 82)( 85, 87)( 86, 88)( 89, 95)( 90, 96)( 91, 93)( 92, 94)
( 97, 99)( 98,100)(101,107)(102,108)(103,105)(104,106)(109,111)(110,112)
(113,119)(114,120)(115,117)(116,118)(121,123)(122,124)(125,131)(126,132)
(127,129)(128,130)(133,135)(134,136)(137,143)(138,144)(139,141)(140,142);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 10, 11)( 13, 29)( 14, 31)( 15, 30)
( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)( 23, 34)
( 24, 36)( 37, 41)( 38, 43)( 39, 42)( 40, 44)( 46, 47)( 49, 65)( 50, 67)
( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)( 56, 64)( 57, 69)( 58, 71)
( 59, 70)( 60, 72)( 73,113)( 74,115)( 75,114)( 76,116)( 77,109)( 78,111)
( 79,110)( 80,112)( 81,117)( 82,119)( 83,118)( 84,120)( 85,137)( 86,139)
( 87,138)( 88,140)( 89,133)( 90,135)( 91,134)( 92,136)( 93,141)( 94,143)
( 95,142)( 96,144)( 97,125)( 98,127)( 99,126)(100,128)(101,121)(102,123)
(103,122)(104,124)(105,129)(106,131)(107,130)(108,132);;
s2 := ( 1, 97)( 2,100)( 3, 99)( 4, 98)( 5,101)( 6,104)( 7,103)( 8,102)
( 9,105)( 10,108)( 11,107)( 12,106)( 13, 85)( 14, 88)( 15, 87)( 16, 86)
( 17, 89)( 18, 92)( 19, 91)( 20, 90)( 21, 93)( 22, 96)( 23, 95)( 24, 94)
( 25, 73)( 26, 76)( 27, 75)( 28, 74)( 29, 77)( 30, 80)( 31, 79)( 32, 78)
( 33, 81)( 34, 84)( 35, 83)( 36, 82)( 37,133)( 38,136)( 39,135)( 40,134)
( 41,137)( 42,140)( 43,139)( 44,138)( 45,141)( 46,144)( 47,143)( 48,142)
( 49,121)( 50,124)( 51,123)( 52,122)( 53,125)( 54,128)( 55,127)( 56,126)
( 57,129)( 58,132)( 59,131)( 60,130)( 61,109)( 62,112)( 63,111)( 64,110)
( 65,113)( 66,116)( 67,115)( 68,114)( 69,117)( 70,120)( 71,119)( 72,118);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(146)!( 1, 3)( 2, 4)( 5, 11)( 6, 12)( 7, 9)( 8, 10)( 13, 15)
( 14, 16)( 17, 23)( 18, 24)( 19, 21)( 20, 22)( 25, 27)( 26, 28)( 29, 35)
( 30, 36)( 31, 33)( 32, 34)( 37, 39)( 38, 40)( 41, 47)( 42, 48)( 43, 45)
( 44, 46)( 49, 51)( 50, 52)( 53, 59)( 54, 60)( 55, 57)( 56, 58)( 61, 63)
( 62, 64)( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 75)( 74, 76)( 77, 83)
( 78, 84)( 79, 81)( 80, 82)( 85, 87)( 86, 88)( 89, 95)( 90, 96)( 91, 93)
( 92, 94)( 97, 99)( 98,100)(101,107)(102,108)(103,105)(104,106)(109,111)
(110,112)(113,119)(114,120)(115,117)(116,118)(121,123)(122,124)(125,131)
(126,132)(127,129)(128,130)(133,135)(134,136)(137,143)(138,144)(139,141)
(140,142);
s1 := Sym(146)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 10, 11)( 13, 29)( 14, 31)
( 15, 30)( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)
( 23, 34)( 24, 36)( 37, 41)( 38, 43)( 39, 42)( 40, 44)( 46, 47)( 49, 65)
( 50, 67)( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)( 56, 64)( 57, 69)
( 58, 71)( 59, 70)( 60, 72)( 73,113)( 74,115)( 75,114)( 76,116)( 77,109)
( 78,111)( 79,110)( 80,112)( 81,117)( 82,119)( 83,118)( 84,120)( 85,137)
( 86,139)( 87,138)( 88,140)( 89,133)( 90,135)( 91,134)( 92,136)( 93,141)
( 94,143)( 95,142)( 96,144)( 97,125)( 98,127)( 99,126)(100,128)(101,121)
(102,123)(103,122)(104,124)(105,129)(106,131)(107,130)(108,132);
s2 := Sym(146)!( 1, 97)( 2,100)( 3, 99)( 4, 98)( 5,101)( 6,104)( 7,103)
( 8,102)( 9,105)( 10,108)( 11,107)( 12,106)( 13, 85)( 14, 88)( 15, 87)
( 16, 86)( 17, 89)( 18, 92)( 19, 91)( 20, 90)( 21, 93)( 22, 96)( 23, 95)
( 24, 94)( 25, 73)( 26, 76)( 27, 75)( 28, 74)( 29, 77)( 30, 80)( 31, 79)
( 32, 78)( 33, 81)( 34, 84)( 35, 83)( 36, 82)( 37,133)( 38,136)( 39,135)
( 40,134)( 41,137)( 42,140)( 43,139)( 44,138)( 45,141)( 46,144)( 47,143)
( 48,142)( 49,121)( 50,124)( 51,123)( 52,122)( 53,125)( 54,128)( 55,127)
( 56,126)( 57,129)( 58,132)( 59,131)( 60,130)( 61,109)( 62,112)( 63,111)
( 64,110)( 65,113)( 66,116)( 67,115)( 68,114)( 69,117)( 70,120)( 71,119)
( 72,118);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope