Polytope of Type {6,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,2}*288a
if this polytope has a name.
Group : SmallGroup(288,951)
Rank : 4
Schlafli Type : {6,12,2}
Number of vertices, edges, etc : 6, 36, 12, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,12,2,2} of size 576
   {6,12,2,3} of size 864
   {6,12,2,4} of size 1152
   {6,12,2,5} of size 1440
   {6,12,2,6} of size 1728
Vertex Figure Of :
   {2,6,12,2} of size 576
   {3,6,12,2} of size 864
   {4,6,12,2} of size 1152
   {3,6,12,2} of size 1152
   {4,6,12,2} of size 1152
   {6,6,12,2} of size 1728
   {6,6,12,2} of size 1728
   {6,6,12,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,2}*144a
   3-fold quotients : {2,12,2}*96, {6,4,2}*96a
   6-fold quotients : {2,6,2}*48, {6,2,2}*48
   9-fold quotients : {2,4,2}*32
   12-fold quotients : {2,3,2}*24, {3,2,2}*24
   18-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,12,4}*576a, {6,24,2}*576a, {12,12,2}*576a
   3-fold covers : {6,36,2}*864a, {18,12,2}*864a, {6,12,2}*864b, {6,12,6}*864b, {6,12,6}*864d, {6,12,2}*864g
   4-fold covers : {12,12,4}*1152b, {6,12,8}*1152b, {6,24,4}*1152c, {12,24,2}*1152a, {24,12,2}*1152a, {6,12,8}*1152e, {6,24,4}*1152f, {12,24,2}*1152d, {24,12,2}*1152d, {6,12,4}*1152b, {12,12,2}*1152a, {6,48,2}*1152b, {6,12,4}*1152e, {12,12,2}*1152f, {6,12,2}*1152b
   5-fold covers : {6,12,10}*1440a, {30,12,2}*1440b, {6,60,2}*1440b
   6-fold covers : {18,12,4}*1728a, {6,36,4}*1728a, {6,12,4}*1728b, {6,72,2}*1728a, {18,24,2}*1728a, {6,24,2}*1728b, {12,36,2}*1728a, {36,12,2}*1728a, {12,12,2}*1728c, {6,24,6}*1728b, {6,24,6}*1728d, {6,24,2}*1728f, {6,12,12}*1728b, {6,12,12}*1728e, {12,12,6}*1728b, {12,12,6}*1728d, {12,12,2}*1728h, {6,12,4}*1728j
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72);;
s1 := ( 1,38)( 2,37)( 3,39)( 4,44)( 5,43)( 6,45)( 7,41)( 8,40)( 9,42)(10,47)
(11,46)(12,48)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,65)(20,64)(21,66)
(22,71)(23,70)(24,72)(25,68)(26,67)(27,69)(28,56)(29,55)(30,57)(31,62)(32,61)
(33,63)(34,59)(35,58)(36,60);;
s2 := ( 1,58)( 2,59)( 3,60)( 4,55)( 5,56)( 6,57)( 7,61)( 8,62)( 9,63)(10,67)
(11,68)(12,69)(13,64)(14,65)(15,66)(16,70)(17,71)(18,72)(19,40)(20,41)(21,42)
(22,37)(23,38)(24,39)(25,43)(26,44)(27,45)(28,49)(29,50)(30,51)(31,46)(32,47)
(33,48)(34,52)(35,53)(36,54);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72);
s1 := Sym(74)!( 1,38)( 2,37)( 3,39)( 4,44)( 5,43)( 6,45)( 7,41)( 8,40)( 9,42)
(10,47)(11,46)(12,48)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,65)(20,64)
(21,66)(22,71)(23,70)(24,72)(25,68)(26,67)(27,69)(28,56)(29,55)(30,57)(31,62)
(32,61)(33,63)(34,59)(35,58)(36,60);
s2 := Sym(74)!( 1,58)( 2,59)( 3,60)( 4,55)( 5,56)( 6,57)( 7,61)( 8,62)( 9,63)
(10,67)(11,68)(12,69)(13,64)(14,65)(15,66)(16,70)(17,71)(18,72)(19,40)(20,41)
(21,42)(22,37)(23,38)(24,39)(25,43)(26,44)(27,45)(28,49)(29,50)(30,51)(31,46)
(32,47)(33,48)(34,52)(35,53)(36,54);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope