include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,6,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,157559)
Rank : 5
Schlafli Type : {6,4,6,4}
Number of vertices, edges, etc : 6, 12, 12, 12, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,2,6,4}*576c
3-fold quotients : {2,4,6,4}*384b
4-fold quotients : {3,2,6,4}*288c, {6,2,3,4}*288
6-fold quotients : {2,2,6,4}*192c
8-fold quotients : {3,2,3,4}*144
12-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 17, 21)( 18, 22)( 19, 23)( 20, 24)
( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)( 68, 72)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)(116,120)
(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)(140,144);;
s1 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 13, 17)( 14, 18)( 15, 19)( 16, 20)
( 25, 29)( 26, 30)( 27, 31)( 28, 32)( 37, 41)( 38, 42)( 39, 43)( 40, 44)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 61, 65)( 62, 66)( 63, 67)( 64, 68)
( 73,113)( 74,114)( 75,115)( 76,116)( 77,109)( 78,110)( 79,111)( 80,112)
( 81,117)( 82,118)( 83,119)( 84,120)( 85,125)( 86,126)( 87,127)( 88,128)
( 89,121)( 90,122)( 91,123)( 92,124)( 93,129)( 94,130)( 95,131)( 96,132)
( 97,137)( 98,138)( 99,139)(100,140)(101,133)(102,134)(103,135)(104,136)
(105,141)(106,142)(107,143)(108,144);;
s2 := ( 1, 73)( 2, 74)( 3, 76)( 4, 75)( 5, 77)( 6, 78)( 7, 80)( 8, 79)
( 9, 81)( 10, 82)( 11, 84)( 12, 83)( 13, 97)( 14, 98)( 15,100)( 16, 99)
( 17,101)( 18,102)( 19,104)( 20,103)( 21,105)( 22,106)( 23,108)( 24,107)
( 25, 85)( 26, 86)( 27, 88)( 28, 87)( 29, 89)( 30, 90)( 31, 92)( 32, 91)
( 33, 93)( 34, 94)( 35, 96)( 36, 95)( 37,109)( 38,110)( 39,112)( 40,111)
( 41,113)( 42,114)( 43,116)( 44,115)( 45,117)( 46,118)( 47,120)( 48,119)
( 49,133)( 50,134)( 51,136)( 52,135)( 53,137)( 54,138)( 55,140)( 56,139)
( 57,141)( 58,142)( 59,144)( 60,143)( 61,121)( 62,122)( 63,124)( 64,123)
( 65,125)( 66,126)( 67,128)( 68,127)( 69,129)( 70,130)( 71,132)( 72,131);;
s3 := ( 1, 13)( 2, 16)( 3, 15)( 4, 14)( 5, 17)( 6, 20)( 7, 19)( 8, 18)
( 9, 21)( 10, 24)( 11, 23)( 12, 22)( 26, 28)( 30, 32)( 34, 36)( 37, 49)
( 38, 52)( 39, 51)( 40, 50)( 41, 53)( 42, 56)( 43, 55)( 44, 54)( 45, 57)
( 46, 60)( 47, 59)( 48, 58)( 62, 64)( 66, 68)( 70, 72)( 73, 85)( 74, 88)
( 75, 87)( 76, 86)( 77, 89)( 78, 92)( 79, 91)( 80, 90)( 81, 93)( 82, 96)
( 83, 95)( 84, 94)( 98,100)(102,104)(106,108)(109,121)(110,124)(111,123)
(112,122)(113,125)(114,128)(115,127)(116,126)(117,129)(118,132)(119,131)
(120,130)(134,136)(138,140)(142,144);;
s4 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 17, 21)( 18, 22)( 19, 23)
( 20, 24)( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)
( 68, 72)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)(101,105)(102,106)(103,107)(104,108)(113,117)(114,118)(115,119)
(116,120)(125,129)(126,130)(127,131)(128,132)(137,141)(138,142)(139,143)
(140,144);
s1 := Sym(144)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 13, 17)( 14, 18)( 15, 19)
( 16, 20)( 25, 29)( 26, 30)( 27, 31)( 28, 32)( 37, 41)( 38, 42)( 39, 43)
( 40, 44)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 61, 65)( 62, 66)( 63, 67)
( 64, 68)( 73,113)( 74,114)( 75,115)( 76,116)( 77,109)( 78,110)( 79,111)
( 80,112)( 81,117)( 82,118)( 83,119)( 84,120)( 85,125)( 86,126)( 87,127)
( 88,128)( 89,121)( 90,122)( 91,123)( 92,124)( 93,129)( 94,130)( 95,131)
( 96,132)( 97,137)( 98,138)( 99,139)(100,140)(101,133)(102,134)(103,135)
(104,136)(105,141)(106,142)(107,143)(108,144);
s2 := Sym(144)!( 1, 73)( 2, 74)( 3, 76)( 4, 75)( 5, 77)( 6, 78)( 7, 80)
( 8, 79)( 9, 81)( 10, 82)( 11, 84)( 12, 83)( 13, 97)( 14, 98)( 15,100)
( 16, 99)( 17,101)( 18,102)( 19,104)( 20,103)( 21,105)( 22,106)( 23,108)
( 24,107)( 25, 85)( 26, 86)( 27, 88)( 28, 87)( 29, 89)( 30, 90)( 31, 92)
( 32, 91)( 33, 93)( 34, 94)( 35, 96)( 36, 95)( 37,109)( 38,110)( 39,112)
( 40,111)( 41,113)( 42,114)( 43,116)( 44,115)( 45,117)( 46,118)( 47,120)
( 48,119)( 49,133)( 50,134)( 51,136)( 52,135)( 53,137)( 54,138)( 55,140)
( 56,139)( 57,141)( 58,142)( 59,144)( 60,143)( 61,121)( 62,122)( 63,124)
( 64,123)( 65,125)( 66,126)( 67,128)( 68,127)( 69,129)( 70,130)( 71,132)
( 72,131);
s3 := Sym(144)!( 1, 13)( 2, 16)( 3, 15)( 4, 14)( 5, 17)( 6, 20)( 7, 19)
( 8, 18)( 9, 21)( 10, 24)( 11, 23)( 12, 22)( 26, 28)( 30, 32)( 34, 36)
( 37, 49)( 38, 52)( 39, 51)( 40, 50)( 41, 53)( 42, 56)( 43, 55)( 44, 54)
( 45, 57)( 46, 60)( 47, 59)( 48, 58)( 62, 64)( 66, 68)( 70, 72)( 73, 85)
( 74, 88)( 75, 87)( 76, 86)( 77, 89)( 78, 92)( 79, 91)( 80, 90)( 81, 93)
( 82, 96)( 83, 95)( 84, 94)( 98,100)(102,104)(106,108)(109,121)(110,124)
(111,123)(112,122)(113,125)(114,128)(115,127)(116,126)(117,129)(118,132)
(119,131)(120,130)(134,136)(138,140)(142,144);
s4 := Sym(144)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144);
poly := sub<Sym(144)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope