include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,4,6}*1152b
if this polytope has a name.
Group : SmallGroup(1152,157559)
Rank : 5
Schlafli Type : {4,6,4,6}
Number of vertices, edges, etc : 4, 12, 12, 12, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,2,6}*576c
3-fold quotients : {4,6,4,2}*384c
4-fold quotients : {4,3,2,6}*288, {4,6,2,3}*288c
6-fold quotients : {4,6,2,2}*192c
8-fold quotients : {4,3,2,3}*144
12-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144);;
s1 := ( 3, 4)( 7, 8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)( 17, 29)
( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)( 39, 40)
( 43, 44)( 47, 48)( 49, 61)( 50, 62)( 51, 64)( 52, 63)( 53, 65)( 54, 66)
( 55, 68)( 56, 67)( 57, 69)( 58, 70)( 59, 72)( 60, 71)( 75, 76)( 79, 80)
( 83, 84)( 85, 97)( 86, 98)( 87,100)( 88, 99)( 89,101)( 90,102)( 91,104)
( 92,103)( 93,105)( 94,106)( 95,108)( 96,107)(111,112)(115,116)(119,120)
(121,133)(122,134)(123,136)(124,135)(125,137)(126,138)(127,140)(128,139)
(129,141)(130,142)(131,144)(132,143);;
s2 := ( 1, 13)( 2, 16)( 3, 15)( 4, 14)( 5, 17)( 6, 20)( 7, 19)( 8, 18)
( 9, 21)( 10, 24)( 11, 23)( 12, 22)( 26, 28)( 30, 32)( 34, 36)( 37, 49)
( 38, 52)( 39, 51)( 40, 50)( 41, 53)( 42, 56)( 43, 55)( 44, 54)( 45, 57)
( 46, 60)( 47, 59)( 48, 58)( 62, 64)( 66, 68)( 70, 72)( 73,121)( 74,124)
( 75,123)( 76,122)( 77,125)( 78,128)( 79,127)( 80,126)( 81,129)( 82,132)
( 83,131)( 84,130)( 85,109)( 86,112)( 87,111)( 88,110)( 89,113)( 90,116)
( 91,115)( 92,114)( 93,117)( 94,120)( 95,119)( 96,118)( 97,133)( 98,136)
( 99,135)(100,134)(101,137)(102,140)(103,139)(104,138)(105,141)(106,144)
(107,143)(108,142);;
s3 := ( 1, 73)( 2, 74)( 3, 75)( 4, 76)( 5, 81)( 6, 82)( 7, 83)( 8, 84)
( 9, 77)( 10, 78)( 11, 79)( 12, 80)( 13, 85)( 14, 86)( 15, 87)( 16, 88)
( 17, 93)( 18, 94)( 19, 95)( 20, 96)( 21, 89)( 22, 90)( 23, 91)( 24, 92)
( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,105)( 30,106)( 31,107)( 32,108)
( 33,101)( 34,102)( 35,103)( 36,104)( 37,109)( 38,110)( 39,111)( 40,112)
( 41,117)( 42,118)( 43,119)( 44,120)( 45,113)( 46,114)( 47,115)( 48,116)
( 49,121)( 50,122)( 51,123)( 52,124)( 53,129)( 54,130)( 55,131)( 56,132)
( 57,125)( 58,126)( 59,127)( 60,128)( 61,133)( 62,134)( 63,135)( 64,136)
( 65,141)( 66,142)( 67,143)( 68,144)( 69,137)( 70,138)( 71,139)( 72,140);;
s4 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 13, 17)( 14, 18)( 15, 19)( 16, 20)
( 25, 29)( 26, 30)( 27, 31)( 28, 32)( 37, 41)( 38, 42)( 39, 43)( 40, 44)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 61, 65)( 62, 66)( 63, 67)( 64, 68)
( 73, 77)( 74, 78)( 75, 79)( 76, 80)( 85, 89)( 86, 90)( 87, 91)( 88, 92)
( 97,101)( 98,102)( 99,103)(100,104)(109,113)(110,114)(111,115)(112,116)
(121,125)(122,126)(123,127)(124,128)(133,137)(134,138)(135,139)(136,140);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144);
s1 := Sym(144)!( 3, 4)( 7, 8)( 11, 12)( 13, 25)( 14, 26)( 15, 28)( 16, 27)
( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 33)( 22, 34)( 23, 36)( 24, 35)
( 39, 40)( 43, 44)( 47, 48)( 49, 61)( 50, 62)( 51, 64)( 52, 63)( 53, 65)
( 54, 66)( 55, 68)( 56, 67)( 57, 69)( 58, 70)( 59, 72)( 60, 71)( 75, 76)
( 79, 80)( 83, 84)( 85, 97)( 86, 98)( 87,100)( 88, 99)( 89,101)( 90,102)
( 91,104)( 92,103)( 93,105)( 94,106)( 95,108)( 96,107)(111,112)(115,116)
(119,120)(121,133)(122,134)(123,136)(124,135)(125,137)(126,138)(127,140)
(128,139)(129,141)(130,142)(131,144)(132,143);
s2 := Sym(144)!( 1, 13)( 2, 16)( 3, 15)( 4, 14)( 5, 17)( 6, 20)( 7, 19)
( 8, 18)( 9, 21)( 10, 24)( 11, 23)( 12, 22)( 26, 28)( 30, 32)( 34, 36)
( 37, 49)( 38, 52)( 39, 51)( 40, 50)( 41, 53)( 42, 56)( 43, 55)( 44, 54)
( 45, 57)( 46, 60)( 47, 59)( 48, 58)( 62, 64)( 66, 68)( 70, 72)( 73,121)
( 74,124)( 75,123)( 76,122)( 77,125)( 78,128)( 79,127)( 80,126)( 81,129)
( 82,132)( 83,131)( 84,130)( 85,109)( 86,112)( 87,111)( 88,110)( 89,113)
( 90,116)( 91,115)( 92,114)( 93,117)( 94,120)( 95,119)( 96,118)( 97,133)
( 98,136)( 99,135)(100,134)(101,137)(102,140)(103,139)(104,138)(105,141)
(106,144)(107,143)(108,142);
s3 := Sym(144)!( 1, 73)( 2, 74)( 3, 75)( 4, 76)( 5, 81)( 6, 82)( 7, 83)
( 8, 84)( 9, 77)( 10, 78)( 11, 79)( 12, 80)( 13, 85)( 14, 86)( 15, 87)
( 16, 88)( 17, 93)( 18, 94)( 19, 95)( 20, 96)( 21, 89)( 22, 90)( 23, 91)
( 24, 92)( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,105)( 30,106)( 31,107)
( 32,108)( 33,101)( 34,102)( 35,103)( 36,104)( 37,109)( 38,110)( 39,111)
( 40,112)( 41,117)( 42,118)( 43,119)( 44,120)( 45,113)( 46,114)( 47,115)
( 48,116)( 49,121)( 50,122)( 51,123)( 52,124)( 53,129)( 54,130)( 55,131)
( 56,132)( 57,125)( 58,126)( 59,127)( 60,128)( 61,133)( 62,134)( 63,135)
( 64,136)( 65,141)( 66,142)( 67,143)( 68,144)( 69,137)( 70,138)( 71,139)
( 72,140);
s4 := Sym(144)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 13, 17)( 14, 18)( 15, 19)
( 16, 20)( 25, 29)( 26, 30)( 27, 31)( 28, 32)( 37, 41)( 38, 42)( 39, 43)
( 40, 44)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 61, 65)( 62, 66)( 63, 67)
( 64, 68)( 73, 77)( 74, 78)( 75, 79)( 76, 80)( 85, 89)( 86, 90)( 87, 91)
( 88, 92)( 97,101)( 98,102)( 99,103)(100,104)(109,113)(110,114)(111,115)
(112,116)(121,125)(122,126)(123,127)(124,128)(133,137)(134,138)(135,139)
(136,140);
poly := sub<Sym(144)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
References : None.
to this polytope