include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,24}*1152d
if this polytope has a name.
Group : SmallGroup(1152,157582)
Rank : 4
Schlafli Type : {2,6,24}
Number of vertices, edges, etc : 2, 12, 144, 48
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,12}*576b
3-fold quotients : {2,6,8}*384c
4-fold quotients : {2,3,12}*288
6-fold quotients : {2,6,4}*192
8-fold quotients : {2,6,6}*144c
12-fold quotients : {2,3,4}*96, {2,6,4}*96b, {2,6,4}*96c
16-fold quotients : {2,3,6}*72
24-fold quotients : {2,3,4}*48, {2,6,2}*48
48-fold quotients : {2,3,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 75)( 4, 76)( 5, 80)( 6, 79)( 7, 78)( 8, 77)( 9, 82)( 10, 81)
( 11, 91)( 12, 92)( 13, 96)( 14, 95)( 15, 94)( 16, 93)( 17, 98)( 18, 97)
( 19, 83)( 20, 84)( 21, 88)( 22, 87)( 23, 86)( 24, 85)( 25, 90)( 26, 89)
( 27,123)( 28,124)( 29,128)( 30,127)( 31,126)( 32,125)( 33,130)( 34,129)
( 35,139)( 36,140)( 37,144)( 38,143)( 39,142)( 40,141)( 41,146)( 42,145)
( 43,131)( 44,132)( 45,136)( 46,135)( 47,134)( 48,133)( 49,138)( 50,137)
( 51, 99)( 52,100)( 53,104)( 54,103)( 55,102)( 56,101)( 57,106)( 58,105)
( 59,115)( 60,116)( 61,120)( 62,119)( 63,118)( 64,117)( 65,122)( 66,121)
( 67,107)( 68,108)( 69,112)( 70,111)( 71,110)( 72,109)( 73,114)( 74,113);;
s2 := ( 3, 35)( 4, 36)( 5, 38)( 6, 37)( 7, 41)( 8, 42)( 9, 39)( 10, 40)
( 11, 27)( 12, 28)( 13, 30)( 14, 29)( 15, 33)( 16, 34)( 17, 31)( 18, 32)
( 19, 43)( 20, 44)( 21, 46)( 22, 45)( 23, 49)( 24, 50)( 25, 47)( 26, 48)
( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 65)( 56, 66)( 57, 63)( 58, 64)
( 69, 70)( 71, 73)( 72, 74)( 75,107)( 76,108)( 77,110)( 78,109)( 79,113)
( 80,114)( 81,111)( 82,112)( 83, 99)( 84,100)( 85,102)( 86,101)( 87,105)
( 88,106)( 89,103)( 90,104)( 91,115)( 92,116)( 93,118)( 94,117)( 95,121)
( 96,122)( 97,119)( 98,120)(123,131)(124,132)(125,134)(126,133)(127,137)
(128,138)(129,135)(130,136)(141,142)(143,145)(144,146);;
s3 := ( 3, 81)( 4, 82)( 5, 79)( 6, 80)( 7, 78)( 8, 77)( 9, 76)( 10, 75)
( 11, 97)( 12, 98)( 13, 95)( 14, 96)( 15, 94)( 16, 93)( 17, 92)( 18, 91)
( 19, 89)( 20, 90)( 21, 87)( 22, 88)( 23, 86)( 24, 85)( 25, 84)( 26, 83)
( 27,105)( 28,106)( 29,103)( 30,104)( 31,102)( 32,101)( 33,100)( 34, 99)
( 35,121)( 36,122)( 37,119)( 38,120)( 39,118)( 40,117)( 41,116)( 42,115)
( 43,113)( 44,114)( 45,111)( 46,112)( 47,110)( 48,109)( 49,108)( 50,107)
( 51,129)( 52,130)( 53,127)( 54,128)( 55,126)( 56,125)( 57,124)( 58,123)
( 59,145)( 60,146)( 61,143)( 62,144)( 63,142)( 64,141)( 65,140)( 66,139)
( 67,137)( 68,138)( 69,135)( 70,136)( 71,134)( 72,133)( 73,132)( 74,131);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!( 3, 75)( 4, 76)( 5, 80)( 6, 79)( 7, 78)( 8, 77)( 9, 82)
( 10, 81)( 11, 91)( 12, 92)( 13, 96)( 14, 95)( 15, 94)( 16, 93)( 17, 98)
( 18, 97)( 19, 83)( 20, 84)( 21, 88)( 22, 87)( 23, 86)( 24, 85)( 25, 90)
( 26, 89)( 27,123)( 28,124)( 29,128)( 30,127)( 31,126)( 32,125)( 33,130)
( 34,129)( 35,139)( 36,140)( 37,144)( 38,143)( 39,142)( 40,141)( 41,146)
( 42,145)( 43,131)( 44,132)( 45,136)( 46,135)( 47,134)( 48,133)( 49,138)
( 50,137)( 51, 99)( 52,100)( 53,104)( 54,103)( 55,102)( 56,101)( 57,106)
( 58,105)( 59,115)( 60,116)( 61,120)( 62,119)( 63,118)( 64,117)( 65,122)
( 66,121)( 67,107)( 68,108)( 69,112)( 70,111)( 71,110)( 72,109)( 73,114)
( 74,113);
s2 := Sym(146)!( 3, 35)( 4, 36)( 5, 38)( 6, 37)( 7, 41)( 8, 42)( 9, 39)
( 10, 40)( 11, 27)( 12, 28)( 13, 30)( 14, 29)( 15, 33)( 16, 34)( 17, 31)
( 18, 32)( 19, 43)( 20, 44)( 21, 46)( 22, 45)( 23, 49)( 24, 50)( 25, 47)
( 26, 48)( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 65)( 56, 66)( 57, 63)
( 58, 64)( 69, 70)( 71, 73)( 72, 74)( 75,107)( 76,108)( 77,110)( 78,109)
( 79,113)( 80,114)( 81,111)( 82,112)( 83, 99)( 84,100)( 85,102)( 86,101)
( 87,105)( 88,106)( 89,103)( 90,104)( 91,115)( 92,116)( 93,118)( 94,117)
( 95,121)( 96,122)( 97,119)( 98,120)(123,131)(124,132)(125,134)(126,133)
(127,137)(128,138)(129,135)(130,136)(141,142)(143,145)(144,146);
s3 := Sym(146)!( 3, 81)( 4, 82)( 5, 79)( 6, 80)( 7, 78)( 8, 77)( 9, 76)
( 10, 75)( 11, 97)( 12, 98)( 13, 95)( 14, 96)( 15, 94)( 16, 93)( 17, 92)
( 18, 91)( 19, 89)( 20, 90)( 21, 87)( 22, 88)( 23, 86)( 24, 85)( 25, 84)
( 26, 83)( 27,105)( 28,106)( 29,103)( 30,104)( 31,102)( 32,101)( 33,100)
( 34, 99)( 35,121)( 36,122)( 37,119)( 38,120)( 39,118)( 40,117)( 41,116)
( 42,115)( 43,113)( 44,114)( 45,111)( 46,112)( 47,110)( 48,109)( 49,108)
( 50,107)( 51,129)( 52,130)( 53,127)( 54,128)( 55,126)( 56,125)( 57,124)
( 58,123)( 59,145)( 60,146)( 61,143)( 62,144)( 63,142)( 64,141)( 65,140)
( 66,139)( 67,137)( 68,138)( 69,135)( 70,136)( 71,134)( 72,133)( 73,132)
( 74,131);
poly := sub<Sym(146)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 >;
to this polytope