Polytope of Type {24,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,6,2}*1152d
if this polytope has a name.
Group : SmallGroup(1152,157582)
Rank : 4
Schlafli Type : {24,6,2}
Number of vertices, edges, etc : 48, 144, 12, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6,2}*576b
   3-fold quotients : {8,6,2}*384c
   4-fold quotients : {12,3,2}*288
   6-fold quotients : {4,6,2}*192
   8-fold quotients : {6,6,2}*144b
   12-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
   16-fold quotients : {6,3,2}*72
   24-fold quotients : {4,3,2}*48, {2,6,2}*48
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 77)(  2, 78)(  3, 80)(  4, 79)(  5, 74)(  6, 73)(  7, 75)(  8, 76)
(  9, 93)( 10, 94)( 11, 96)( 12, 95)( 13, 90)( 14, 89)( 15, 91)( 16, 92)
( 17, 85)( 18, 86)( 19, 88)( 20, 87)( 21, 82)( 22, 81)( 23, 83)( 24, 84)
( 25,101)( 26,102)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31, 99)( 32,100)
( 33,117)( 34,118)( 35,120)( 36,119)( 37,114)( 38,113)( 39,115)( 40,116)
( 41,109)( 42,110)( 43,112)( 44,111)( 45,106)( 46,105)( 47,107)( 48,108)
( 49,125)( 50,126)( 51,128)( 52,127)( 53,122)( 54,121)( 55,123)( 56,124)
( 57,141)( 58,142)( 59,144)( 60,143)( 61,138)( 62,137)( 63,139)( 64,140)
( 65,133)( 66,134)( 67,136)( 68,135)( 69,130)( 70,129)( 71,131)( 72,132);;
s1 := (  1,  9)(  2, 10)(  3, 14)(  4, 13)(  5, 12)(  6, 11)(  7, 16)(  8, 15)
( 19, 22)( 20, 21)( 23, 24)( 25, 57)( 26, 58)( 27, 62)( 28, 61)( 29, 60)
( 30, 59)( 31, 64)( 32, 63)( 33, 49)( 34, 50)( 35, 54)( 36, 53)( 37, 52)
( 38, 51)( 39, 56)( 40, 55)( 41, 65)( 42, 66)( 43, 70)( 44, 69)( 45, 68)
( 46, 67)( 47, 72)( 48, 71)( 73, 81)( 74, 82)( 75, 86)( 76, 85)( 77, 84)
( 78, 83)( 79, 88)( 80, 87)( 91, 94)( 92, 93)( 95, 96)( 97,129)( 98,130)
( 99,134)(100,133)(101,132)(102,131)(103,136)(104,135)(105,121)(106,122)
(107,126)(108,125)(109,124)(110,123)(111,128)(112,127)(113,137)(114,138)
(115,142)(116,141)(117,140)(118,139)(119,144)(120,143);;
s2 := (  1,121)(  2,122)(  3,127)(  4,128)(  5,126)(  6,125)(  7,123)(  8,124)
(  9,137)( 10,138)( 11,143)( 12,144)( 13,142)( 14,141)( 15,139)( 16,140)
( 17,129)( 18,130)( 19,135)( 20,136)( 21,134)( 22,133)( 23,131)( 24,132)
( 25, 97)( 26, 98)( 27,103)( 28,104)( 29,102)( 30,101)( 31, 99)( 32,100)
( 33,113)( 34,114)( 35,119)( 36,120)( 37,118)( 38,117)( 39,115)( 40,116)
( 41,105)( 42,106)( 43,111)( 44,112)( 45,110)( 46,109)( 47,107)( 48,108)
( 49, 73)( 50, 74)( 51, 79)( 52, 80)( 53, 78)( 54, 77)( 55, 75)( 56, 76)
( 57, 89)( 58, 90)( 59, 95)( 60, 96)( 61, 94)( 62, 93)( 63, 91)( 64, 92)
( 65, 81)( 66, 82)( 67, 87)( 68, 88)( 69, 86)( 70, 85)( 71, 83)( 72, 84);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  1, 77)(  2, 78)(  3, 80)(  4, 79)(  5, 74)(  6, 73)(  7, 75)
(  8, 76)(  9, 93)( 10, 94)( 11, 96)( 12, 95)( 13, 90)( 14, 89)( 15, 91)
( 16, 92)( 17, 85)( 18, 86)( 19, 88)( 20, 87)( 21, 82)( 22, 81)( 23, 83)
( 24, 84)( 25,101)( 26,102)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31, 99)
( 32,100)( 33,117)( 34,118)( 35,120)( 36,119)( 37,114)( 38,113)( 39,115)
( 40,116)( 41,109)( 42,110)( 43,112)( 44,111)( 45,106)( 46,105)( 47,107)
( 48,108)( 49,125)( 50,126)( 51,128)( 52,127)( 53,122)( 54,121)( 55,123)
( 56,124)( 57,141)( 58,142)( 59,144)( 60,143)( 61,138)( 62,137)( 63,139)
( 64,140)( 65,133)( 66,134)( 67,136)( 68,135)( 69,130)( 70,129)( 71,131)
( 72,132);
s1 := Sym(146)!(  1,  9)(  2, 10)(  3, 14)(  4, 13)(  5, 12)(  6, 11)(  7, 16)
(  8, 15)( 19, 22)( 20, 21)( 23, 24)( 25, 57)( 26, 58)( 27, 62)( 28, 61)
( 29, 60)( 30, 59)( 31, 64)( 32, 63)( 33, 49)( 34, 50)( 35, 54)( 36, 53)
( 37, 52)( 38, 51)( 39, 56)( 40, 55)( 41, 65)( 42, 66)( 43, 70)( 44, 69)
( 45, 68)( 46, 67)( 47, 72)( 48, 71)( 73, 81)( 74, 82)( 75, 86)( 76, 85)
( 77, 84)( 78, 83)( 79, 88)( 80, 87)( 91, 94)( 92, 93)( 95, 96)( 97,129)
( 98,130)( 99,134)(100,133)(101,132)(102,131)(103,136)(104,135)(105,121)
(106,122)(107,126)(108,125)(109,124)(110,123)(111,128)(112,127)(113,137)
(114,138)(115,142)(116,141)(117,140)(118,139)(119,144)(120,143);
s2 := Sym(146)!(  1,121)(  2,122)(  3,127)(  4,128)(  5,126)(  6,125)(  7,123)
(  8,124)(  9,137)( 10,138)( 11,143)( 12,144)( 13,142)( 14,141)( 15,139)
( 16,140)( 17,129)( 18,130)( 19,135)( 20,136)( 21,134)( 22,133)( 23,131)
( 24,132)( 25, 97)( 26, 98)( 27,103)( 28,104)( 29,102)( 30,101)( 31, 99)
( 32,100)( 33,113)( 34,114)( 35,119)( 36,120)( 37,118)( 38,117)( 39,115)
( 40,116)( 41,105)( 42,106)( 43,111)( 44,112)( 45,110)( 46,109)( 47,107)
( 48,108)( 49, 73)( 50, 74)( 51, 79)( 52, 80)( 53, 78)( 54, 77)( 55, 75)
( 56, 76)( 57, 89)( 58, 90)( 59, 95)( 60, 96)( 61, 94)( 62, 93)( 63, 91)
( 64, 92)( 65, 81)( 66, 82)( 67, 87)( 68, 88)( 69, 86)( 70, 85)( 71, 83)
( 72, 84);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >; 
 

to this polytope