include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6,6}*1152b
if this polytope has a name.
Group : SmallGroup(1152,157603)
Rank : 4
Schlafli Type : {8,6,6}
Number of vertices, edges, etc : 16, 48, 36, 6
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,6}*576a
3-fold quotients : {8,6,2}*384b
4-fold quotients : {4,6,6}*288d
6-fold quotients : {8,3,2}*192, {4,6,2}*192
8-fold quotients : {2,6,6}*144a
12-fold quotients : {4,3,2}*96, {4,6,2}*96b, {4,6,2}*96c
24-fold quotients : {4,3,2}*48, {2,2,6}*48, {2,6,2}*48
48-fold quotients : {2,2,3}*24, {2,3,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 77)( 2, 78)( 3, 80)( 4, 79)( 5, 74)( 6, 73)( 7, 75)( 8, 76)
( 9, 85)( 10, 86)( 11, 88)( 12, 87)( 13, 82)( 14, 81)( 15, 83)( 16, 84)
( 17, 93)( 18, 94)( 19, 96)( 20, 95)( 21, 90)( 22, 89)( 23, 91)( 24, 92)
( 25,101)( 26,102)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31, 99)( 32,100)
( 33,109)( 34,110)( 35,112)( 36,111)( 37,106)( 38,105)( 39,107)( 40,108)
( 41,117)( 42,118)( 43,120)( 44,119)( 45,114)( 46,113)( 47,115)( 48,116)
( 49,125)( 50,126)( 51,128)( 52,127)( 53,122)( 54,121)( 55,123)( 56,124)
( 57,133)( 58,134)( 59,136)( 60,135)( 61,130)( 62,129)( 63,131)( 64,132)
( 65,141)( 66,142)( 67,144)( 68,143)( 69,138)( 70,137)( 71,139)( 72,140)
(145,221)(146,222)(147,224)(148,223)(149,218)(150,217)(151,219)(152,220)
(153,229)(154,230)(155,232)(156,231)(157,226)(158,225)(159,227)(160,228)
(161,237)(162,238)(163,240)(164,239)(165,234)(166,233)(167,235)(168,236)
(169,245)(170,246)(171,248)(172,247)(173,242)(174,241)(175,243)(176,244)
(177,253)(178,254)(179,256)(180,255)(181,250)(182,249)(183,251)(184,252)
(185,261)(186,262)(187,264)(188,263)(189,258)(190,257)(191,259)(192,260)
(193,269)(194,270)(195,272)(196,271)(197,266)(198,265)(199,267)(200,268)
(201,277)(202,278)(203,280)(204,279)(205,274)(206,273)(207,275)(208,276)
(209,285)(210,286)(211,288)(212,287)(213,282)(214,281)(215,283)(216,284);;
s1 := ( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)( 21, 23)
( 22, 24)( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 55)( 30, 56)( 31, 53)
( 32, 54)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)( 38, 64)( 39, 61)
( 40, 62)( 41, 65)( 42, 66)( 43, 68)( 44, 67)( 45, 71)( 46, 72)( 47, 69)
( 48, 70)( 73, 74)( 77, 80)( 78, 79)( 81, 82)( 85, 88)( 86, 87)( 89, 90)
( 93, 96)( 94, 95)( 97,122)( 98,121)( 99,123)(100,124)(101,128)(102,127)
(103,126)(104,125)(105,130)(106,129)(107,131)(108,132)(109,136)(110,135)
(111,134)(112,133)(113,138)(114,137)(115,139)(116,140)(117,144)(118,143)
(119,142)(120,141)(147,148)(149,151)(150,152)(155,156)(157,159)(158,160)
(163,164)(165,167)(166,168)(169,193)(170,194)(171,196)(172,195)(173,199)
(174,200)(175,197)(176,198)(177,201)(178,202)(179,204)(180,203)(181,207)
(182,208)(183,205)(184,206)(185,209)(186,210)(187,212)(188,211)(189,215)
(190,216)(191,213)(192,214)(217,218)(221,224)(222,223)(225,226)(229,232)
(230,231)(233,234)(237,240)(238,239)(241,266)(242,265)(243,267)(244,268)
(245,272)(246,271)(247,270)(248,269)(249,274)(250,273)(251,275)(252,276)
(253,280)(254,279)(255,278)(256,277)(257,282)(258,281)(259,283)(260,284)
(261,288)(262,287)(263,286)(264,285);;
s2 := ( 1, 25)( 2, 26)( 3, 31)( 4, 32)( 5, 30)( 6, 29)( 7, 27)( 8, 28)
( 9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)( 16, 44)
( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)( 24, 36)
( 51, 55)( 52, 56)( 53, 54)( 57, 65)( 58, 66)( 59, 71)( 60, 72)( 61, 70)
( 62, 69)( 63, 67)( 64, 68)( 73, 98)( 74, 97)( 75,104)( 76,103)( 77,101)
( 78,102)( 79,100)( 80, 99)( 81,114)( 82,113)( 83,120)( 84,119)( 85,117)
( 86,118)( 87,116)( 88,115)( 89,106)( 90,105)( 91,112)( 92,111)( 93,109)
( 94,110)( 95,108)( 96,107)(121,122)(123,128)(124,127)(129,138)(130,137)
(131,144)(132,143)(133,141)(134,142)(135,140)(136,139)(145,169)(146,170)
(147,175)(148,176)(149,174)(150,173)(151,171)(152,172)(153,185)(154,186)
(155,191)(156,192)(157,190)(158,189)(159,187)(160,188)(161,177)(162,178)
(163,183)(164,184)(165,182)(166,181)(167,179)(168,180)(195,199)(196,200)
(197,198)(201,209)(202,210)(203,215)(204,216)(205,214)(206,213)(207,211)
(208,212)(217,242)(218,241)(219,248)(220,247)(221,245)(222,246)(223,244)
(224,243)(225,258)(226,257)(227,264)(228,263)(229,261)(230,262)(231,260)
(232,259)(233,250)(234,249)(235,256)(236,255)(237,253)(238,254)(239,252)
(240,251)(265,266)(267,272)(268,271)(273,282)(274,281)(275,288)(276,287)
(277,285)(278,286)(279,284)(280,283);;
s3 := ( 1,153)( 2,154)( 3,155)( 4,156)( 5,157)( 6,158)( 7,159)( 8,160)
( 9,145)( 10,146)( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)( 16,152)
( 17,161)( 18,162)( 19,163)( 20,164)( 21,165)( 22,166)( 23,167)( 24,168)
( 25,177)( 26,178)( 27,179)( 28,180)( 29,181)( 30,182)( 31,183)( 32,184)
( 33,169)( 34,170)( 35,171)( 36,172)( 37,173)( 38,174)( 39,175)( 40,176)
( 41,185)( 42,186)( 43,187)( 44,188)( 45,189)( 46,190)( 47,191)( 48,192)
( 49,201)( 50,202)( 51,203)( 52,204)( 53,205)( 54,206)( 55,207)( 56,208)
( 57,193)( 58,194)( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)( 64,200)
( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)( 72,216)
( 73,225)( 74,226)( 75,227)( 76,228)( 77,229)( 78,230)( 79,231)( 80,232)
( 81,217)( 82,218)( 83,219)( 84,220)( 85,221)( 86,222)( 87,223)( 88,224)
( 89,233)( 90,234)( 91,235)( 92,236)( 93,237)( 94,238)( 95,239)( 96,240)
( 97,249)( 98,250)( 99,251)(100,252)(101,253)(102,254)(103,255)(104,256)
(105,241)(106,242)(107,243)(108,244)(109,245)(110,246)(111,247)(112,248)
(113,257)(114,258)(115,259)(116,260)(117,261)(118,262)(119,263)(120,264)
(121,273)(122,274)(123,275)(124,276)(125,277)(126,278)(127,279)(128,280)
(129,265)(130,266)(131,267)(132,268)(133,269)(134,270)(135,271)(136,272)
(137,281)(138,282)(139,283)(140,284)(141,285)(142,286)(143,287)(144,288);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(288)!( 1, 77)( 2, 78)( 3, 80)( 4, 79)( 5, 74)( 6, 73)( 7, 75)
( 8, 76)( 9, 85)( 10, 86)( 11, 88)( 12, 87)( 13, 82)( 14, 81)( 15, 83)
( 16, 84)( 17, 93)( 18, 94)( 19, 96)( 20, 95)( 21, 90)( 22, 89)( 23, 91)
( 24, 92)( 25,101)( 26,102)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31, 99)
( 32,100)( 33,109)( 34,110)( 35,112)( 36,111)( 37,106)( 38,105)( 39,107)
( 40,108)( 41,117)( 42,118)( 43,120)( 44,119)( 45,114)( 46,113)( 47,115)
( 48,116)( 49,125)( 50,126)( 51,128)( 52,127)( 53,122)( 54,121)( 55,123)
( 56,124)( 57,133)( 58,134)( 59,136)( 60,135)( 61,130)( 62,129)( 63,131)
( 64,132)( 65,141)( 66,142)( 67,144)( 68,143)( 69,138)( 70,137)( 71,139)
( 72,140)(145,221)(146,222)(147,224)(148,223)(149,218)(150,217)(151,219)
(152,220)(153,229)(154,230)(155,232)(156,231)(157,226)(158,225)(159,227)
(160,228)(161,237)(162,238)(163,240)(164,239)(165,234)(166,233)(167,235)
(168,236)(169,245)(170,246)(171,248)(172,247)(173,242)(174,241)(175,243)
(176,244)(177,253)(178,254)(179,256)(180,255)(181,250)(182,249)(183,251)
(184,252)(185,261)(186,262)(187,264)(188,263)(189,258)(190,257)(191,259)
(192,260)(193,269)(194,270)(195,272)(196,271)(197,266)(198,265)(199,267)
(200,268)(201,277)(202,278)(203,280)(204,279)(205,274)(206,273)(207,275)
(208,276)(209,285)(210,286)(211,288)(212,287)(213,282)(214,281)(215,283)
(216,284);
s1 := Sym(288)!( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)
( 21, 23)( 22, 24)( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 55)( 30, 56)
( 31, 53)( 32, 54)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)( 38, 64)
( 39, 61)( 40, 62)( 41, 65)( 42, 66)( 43, 68)( 44, 67)( 45, 71)( 46, 72)
( 47, 69)( 48, 70)( 73, 74)( 77, 80)( 78, 79)( 81, 82)( 85, 88)( 86, 87)
( 89, 90)( 93, 96)( 94, 95)( 97,122)( 98,121)( 99,123)(100,124)(101,128)
(102,127)(103,126)(104,125)(105,130)(106,129)(107,131)(108,132)(109,136)
(110,135)(111,134)(112,133)(113,138)(114,137)(115,139)(116,140)(117,144)
(118,143)(119,142)(120,141)(147,148)(149,151)(150,152)(155,156)(157,159)
(158,160)(163,164)(165,167)(166,168)(169,193)(170,194)(171,196)(172,195)
(173,199)(174,200)(175,197)(176,198)(177,201)(178,202)(179,204)(180,203)
(181,207)(182,208)(183,205)(184,206)(185,209)(186,210)(187,212)(188,211)
(189,215)(190,216)(191,213)(192,214)(217,218)(221,224)(222,223)(225,226)
(229,232)(230,231)(233,234)(237,240)(238,239)(241,266)(242,265)(243,267)
(244,268)(245,272)(246,271)(247,270)(248,269)(249,274)(250,273)(251,275)
(252,276)(253,280)(254,279)(255,278)(256,277)(257,282)(258,281)(259,283)
(260,284)(261,288)(262,287)(263,286)(264,285);
s2 := Sym(288)!( 1, 25)( 2, 26)( 3, 31)( 4, 32)( 5, 30)( 6, 29)( 7, 27)
( 8, 28)( 9, 41)( 10, 42)( 11, 47)( 12, 48)( 13, 46)( 14, 45)( 15, 43)
( 16, 44)( 17, 33)( 18, 34)( 19, 39)( 20, 40)( 21, 38)( 22, 37)( 23, 35)
( 24, 36)( 51, 55)( 52, 56)( 53, 54)( 57, 65)( 58, 66)( 59, 71)( 60, 72)
( 61, 70)( 62, 69)( 63, 67)( 64, 68)( 73, 98)( 74, 97)( 75,104)( 76,103)
( 77,101)( 78,102)( 79,100)( 80, 99)( 81,114)( 82,113)( 83,120)( 84,119)
( 85,117)( 86,118)( 87,116)( 88,115)( 89,106)( 90,105)( 91,112)( 92,111)
( 93,109)( 94,110)( 95,108)( 96,107)(121,122)(123,128)(124,127)(129,138)
(130,137)(131,144)(132,143)(133,141)(134,142)(135,140)(136,139)(145,169)
(146,170)(147,175)(148,176)(149,174)(150,173)(151,171)(152,172)(153,185)
(154,186)(155,191)(156,192)(157,190)(158,189)(159,187)(160,188)(161,177)
(162,178)(163,183)(164,184)(165,182)(166,181)(167,179)(168,180)(195,199)
(196,200)(197,198)(201,209)(202,210)(203,215)(204,216)(205,214)(206,213)
(207,211)(208,212)(217,242)(218,241)(219,248)(220,247)(221,245)(222,246)
(223,244)(224,243)(225,258)(226,257)(227,264)(228,263)(229,261)(230,262)
(231,260)(232,259)(233,250)(234,249)(235,256)(236,255)(237,253)(238,254)
(239,252)(240,251)(265,266)(267,272)(268,271)(273,282)(274,281)(275,288)
(276,287)(277,285)(278,286)(279,284)(280,283);
s3 := Sym(288)!( 1,153)( 2,154)( 3,155)( 4,156)( 5,157)( 6,158)( 7,159)
( 8,160)( 9,145)( 10,146)( 11,147)( 12,148)( 13,149)( 14,150)( 15,151)
( 16,152)( 17,161)( 18,162)( 19,163)( 20,164)( 21,165)( 22,166)( 23,167)
( 24,168)( 25,177)( 26,178)( 27,179)( 28,180)( 29,181)( 30,182)( 31,183)
( 32,184)( 33,169)( 34,170)( 35,171)( 36,172)( 37,173)( 38,174)( 39,175)
( 40,176)( 41,185)( 42,186)( 43,187)( 44,188)( 45,189)( 46,190)( 47,191)
( 48,192)( 49,201)( 50,202)( 51,203)( 52,204)( 53,205)( 54,206)( 55,207)
( 56,208)( 57,193)( 58,194)( 59,195)( 60,196)( 61,197)( 62,198)( 63,199)
( 64,200)( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)
( 72,216)( 73,225)( 74,226)( 75,227)( 76,228)( 77,229)( 78,230)( 79,231)
( 80,232)( 81,217)( 82,218)( 83,219)( 84,220)( 85,221)( 86,222)( 87,223)
( 88,224)( 89,233)( 90,234)( 91,235)( 92,236)( 93,237)( 94,238)( 95,239)
( 96,240)( 97,249)( 98,250)( 99,251)(100,252)(101,253)(102,254)(103,255)
(104,256)(105,241)(106,242)(107,243)(108,244)(109,245)(110,246)(111,247)
(112,248)(113,257)(114,258)(115,259)(116,260)(117,261)(118,262)(119,263)
(120,264)(121,273)(122,274)(123,275)(124,276)(125,277)(126,278)(127,279)
(128,280)(129,265)(130,266)(131,267)(132,268)(133,269)(134,270)(135,271)
(136,272)(137,281)(138,282)(139,283)(140,284)(141,285)(142,286)(143,287)
(144,288);
poly := sub<Sym(288)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1 >;
References : None.
to this polytope