include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,8,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,8,2,3}*1152
if this polytope has a name.
Group : SmallGroup(1152,157603)
Rank : 6
Schlafli Type : {2,3,8,2,3}
Number of vertices, edges, etc : 2, 6, 24, 16, 3, 3
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,4,2,3}*576
4-fold quotients : {2,3,4,2,3}*288
8-fold quotients : {2,3,2,2,3}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8,21)( 9,24)(11,16)(12,15)(13,33)(14,36)(17,39)(18,40)
(19,25)(20,22)(23,44)(26,43)(27,28)(29,45)(30,47)(31,34)(32,37)(35,49)(38,50)
(41,42);;
s2 := ( 3, 6)( 4,15)( 5,11)( 8,44)( 9,43)(10,27)(12,16)(13,49)(14,50)(17,42)
(18,41)(19,26)(20,23)(21,22)(24,25)(29,46)(30,48)(31,35)(32,38)(33,34)(36,37)
(39,40);;
s3 := ( 3,46)( 4,42)( 5,41)( 6,49)( 7,35)( 8,36)( 9,33)(10,48)(11,44)(12,26)
(13,24)(14,21)(15,43)(16,23)(17,37)(18,34)(19,47)(20,45)(22,29)(25,30)(27,50)
(28,38)(31,40)(32,39);;
s4 := (52,53);;
s5 := (51,52);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(53)!(1,2);
s1 := Sym(53)!( 4, 5)( 6, 7)( 8,21)( 9,24)(11,16)(12,15)(13,33)(14,36)(17,39)
(18,40)(19,25)(20,22)(23,44)(26,43)(27,28)(29,45)(30,47)(31,34)(32,37)(35,49)
(38,50)(41,42);
s2 := Sym(53)!( 3, 6)( 4,15)( 5,11)( 8,44)( 9,43)(10,27)(12,16)(13,49)(14,50)
(17,42)(18,41)(19,26)(20,23)(21,22)(24,25)(29,46)(30,48)(31,35)(32,38)(33,34)
(36,37)(39,40);
s3 := Sym(53)!( 3,46)( 4,42)( 5,41)( 6,49)( 7,35)( 8,36)( 9,33)(10,48)(11,44)
(12,26)(13,24)(14,21)(15,43)(16,23)(17,37)(18,34)(19,47)(20,45)(22,29)(25,30)
(27,50)(28,38)(31,40)(32,39);
s4 := Sym(53)!(52,53);
s5 := Sym(53)!(51,52);
poly := sub<Sym(53)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2 >;
to this polytope