Polytope of Type {2,3,4,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,4,2,3}*288
if this polytope has a name.
Group : SmallGroup(288,1028)
Rank : 6
Schlafli Type : {2,3,4,2,3}
Number of vertices, edges, etc : 2, 3, 6, 4, 3, 3
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,3,4,2,3,2} of size 576
   {2,3,4,2,3,3} of size 1152
   {2,3,4,2,3,4} of size 1152
   {2,3,4,2,3,6} of size 1728
Vertex Figure Of :
   {2,2,3,4,2,3} of size 576
   {3,2,3,4,2,3} of size 864
   {4,2,3,4,2,3} of size 1152
   {5,2,3,4,2,3} of size 1440
   {6,2,3,4,2,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,3,4,2,3}*576, {2,3,4,2,6}*576, {2,6,4,2,3}*576b, {2,6,4,2,3}*576c
   3-fold covers : {2,3,4,2,9}*864, {2,9,4,2,3}*864, {6,3,4,2,3}*864
   4-fold covers : {2,12,4,2,3}*1152b, {2,12,4,2,3}*1152c, {2,3,4,2,12}*1152, {4,6,4,2,3}*1152b, {2,3,8,2,3}*1152, {2,3,4,2,6}*1152, {2,6,4,2,3}*1152, {2,6,4,2,6}*1152b, {2,6,4,2,6}*1152c, {4,3,4,2,3}*1152b
   5-fold covers : {2,15,4,2,3}*1440, {2,3,4,2,15}*1440
   6-fold covers : {2,3,4,2,9}*1728, {2,3,4,2,18}*1728, {2,6,4,2,9}*1728b, {2,6,4,2,9}*1728c, {2,9,4,2,3}*1728, {2,9,4,2,6}*1728, {2,18,4,2,3}*1728b, {2,18,4,2,3}*1728c, {2,3,4,6,3}*1728, {2,3,12,2,3}*1728, {2,6,12,2,3}*1728d, {6,3,4,2,3}*1728, {6,3,4,2,6}*1728, {6,6,4,2,3}*1728d, {6,6,4,2,3}*1728e, {6,6,4,2,3}*1728f
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (5,6);;
s2 := (4,5);;
s3 := (3,4)(5,6);;
s4 := (8,9);;
s5 := (7,8);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(1,2);
s1 := Sym(9)!(5,6);
s2 := Sym(9)!(4,5);
s3 := Sym(9)!(3,4)(5,6);
s4 := Sym(9)!(8,9);
s5 := Sym(9)!(7,8);
poly := sub<Sym(9)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2, s4*s5*s4*s5*s4*s5, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2 >; 
 

to this polytope