include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,8,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8,6}*1152c
if this polytope has a name.
Group : SmallGroup(1152,157621)
Rank : 4
Schlafli Type : {6,8,6}
Number of vertices, edges, etc : 6, 48, 48, 12
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4,6}*576a
3-fold quotients : {2,8,6}*384c
4-fold quotients : {6,4,3}*288
6-fold quotients : {2,4,6}*192
8-fold quotients : {6,2,6}*144
12-fold quotients : {2,4,3}*96, {2,4,6}*96b, {2,4,6}*96c
16-fold quotients : {3,2,6}*72, {6,2,3}*72
24-fold quotients : {2,4,3}*48, {2,2,6}*48, {6,2,2}*48
32-fold quotients : {3,2,3}*36
48-fold quotients : {2,2,3}*24, {3,2,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 9, 17)( 10, 18)( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 15, 23)( 16, 24)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)
( 57, 65)( 58, 66)( 59, 67)( 60, 68)( 61, 69)( 62, 70)( 63, 71)( 64, 72)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)(112,120)
(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144);;
s1 := ( 1, 85)( 2, 86)( 3, 88)( 4, 87)( 5, 82)( 6, 81)( 7, 83)( 8, 84)
( 9, 77)( 10, 78)( 11, 80)( 12, 79)( 13, 74)( 14, 73)( 15, 75)( 16, 76)
( 17, 93)( 18, 94)( 19, 96)( 20, 95)( 21, 90)( 22, 89)( 23, 91)( 24, 92)
( 25,109)( 26,110)( 27,112)( 28,111)( 29,106)( 30,105)( 31,107)( 32,108)
( 33,101)( 34,102)( 35,104)( 36,103)( 37, 98)( 38, 97)( 39, 99)( 40,100)
( 41,117)( 42,118)( 43,120)( 44,119)( 45,114)( 46,113)( 47,115)( 48,116)
( 49,133)( 50,134)( 51,136)( 52,135)( 53,130)( 54,129)( 55,131)( 56,132)
( 57,125)( 58,126)( 59,128)( 60,127)( 61,122)( 62,121)( 63,123)( 64,124)
( 65,141)( 66,142)( 67,144)( 68,143)( 69,138)( 70,137)( 71,139)( 72,140);;
s2 := ( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)( 21, 23)
( 22, 24)( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 55)( 30, 56)( 31, 53)
( 32, 54)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)( 38, 64)( 39, 61)
( 40, 62)( 41, 65)( 42, 66)( 43, 68)( 44, 67)( 45, 71)( 46, 72)( 47, 69)
( 48, 70)( 75, 76)( 77, 79)( 78, 80)( 83, 84)( 85, 87)( 86, 88)( 91, 92)
( 93, 95)( 94, 96)( 97,121)( 98,122)( 99,124)(100,123)(101,127)(102,128)
(103,125)(104,126)(105,129)(106,130)(107,132)(108,131)(109,135)(110,136)
(111,133)(112,134)(113,137)(114,138)(115,140)(116,139)(117,143)(118,144)
(119,141)(120,142);;
s3 := ( 1, 25)( 2, 26)( 3, 31)( 4, 32)( 5, 30)( 6, 29)( 7, 27)( 8, 28)
( 9, 33)( 10, 34)( 11, 39)( 12, 40)( 13, 38)( 14, 37)( 15, 35)( 16, 36)
( 17, 41)( 18, 42)( 19, 47)( 20, 48)( 21, 46)( 22, 45)( 23, 43)( 24, 44)
( 51, 55)( 52, 56)( 53, 54)( 59, 63)( 60, 64)( 61, 62)( 67, 71)( 68, 72)
( 69, 70)( 73, 98)( 74, 97)( 75,104)( 76,103)( 77,101)( 78,102)( 79,100)
( 80, 99)( 81,106)( 82,105)( 83,112)( 84,111)( 85,109)( 86,110)( 87,108)
( 88,107)( 89,114)( 90,113)( 91,120)( 92,119)( 93,117)( 94,118)( 95,116)
( 96,115)(121,122)(123,128)(124,127)(129,130)(131,136)(132,135)(137,138)
(139,144)(140,143);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 9, 17)( 10, 18)( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 15, 23)
( 16, 24)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)
( 40, 48)( 57, 65)( 58, 66)( 59, 67)( 60, 68)( 61, 69)( 62, 70)( 63, 71)
( 64, 72)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(111,119)
(112,120)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)
(136,144);
s1 := Sym(144)!( 1, 85)( 2, 86)( 3, 88)( 4, 87)( 5, 82)( 6, 81)( 7, 83)
( 8, 84)( 9, 77)( 10, 78)( 11, 80)( 12, 79)( 13, 74)( 14, 73)( 15, 75)
( 16, 76)( 17, 93)( 18, 94)( 19, 96)( 20, 95)( 21, 90)( 22, 89)( 23, 91)
( 24, 92)( 25,109)( 26,110)( 27,112)( 28,111)( 29,106)( 30,105)( 31,107)
( 32,108)( 33,101)( 34,102)( 35,104)( 36,103)( 37, 98)( 38, 97)( 39, 99)
( 40,100)( 41,117)( 42,118)( 43,120)( 44,119)( 45,114)( 46,113)( 47,115)
( 48,116)( 49,133)( 50,134)( 51,136)( 52,135)( 53,130)( 54,129)( 55,131)
( 56,132)( 57,125)( 58,126)( 59,128)( 60,127)( 61,122)( 62,121)( 63,123)
( 64,124)( 65,141)( 66,142)( 67,144)( 68,143)( 69,138)( 70,137)( 71,139)
( 72,140);
s2 := Sym(144)!( 3, 4)( 5, 7)( 6, 8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)
( 21, 23)( 22, 24)( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 55)( 30, 56)
( 31, 53)( 32, 54)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 37, 63)( 38, 64)
( 39, 61)( 40, 62)( 41, 65)( 42, 66)( 43, 68)( 44, 67)( 45, 71)( 46, 72)
( 47, 69)( 48, 70)( 75, 76)( 77, 79)( 78, 80)( 83, 84)( 85, 87)( 86, 88)
( 91, 92)( 93, 95)( 94, 96)( 97,121)( 98,122)( 99,124)(100,123)(101,127)
(102,128)(103,125)(104,126)(105,129)(106,130)(107,132)(108,131)(109,135)
(110,136)(111,133)(112,134)(113,137)(114,138)(115,140)(116,139)(117,143)
(118,144)(119,141)(120,142);
s3 := Sym(144)!( 1, 25)( 2, 26)( 3, 31)( 4, 32)( 5, 30)( 6, 29)( 7, 27)
( 8, 28)( 9, 33)( 10, 34)( 11, 39)( 12, 40)( 13, 38)( 14, 37)( 15, 35)
( 16, 36)( 17, 41)( 18, 42)( 19, 47)( 20, 48)( 21, 46)( 22, 45)( 23, 43)
( 24, 44)( 51, 55)( 52, 56)( 53, 54)( 59, 63)( 60, 64)( 61, 62)( 67, 71)
( 68, 72)( 69, 70)( 73, 98)( 74, 97)( 75,104)( 76,103)( 77,101)( 78,102)
( 79,100)( 80, 99)( 81,106)( 82,105)( 83,112)( 84,111)( 85,109)( 86,110)
( 87,108)( 88,107)( 89,114)( 90,113)( 91,120)( 92,119)( 93,117)( 94,118)
( 95,116)( 96,115)(121,122)(123,128)(124,127)(129,130)(131,136)(132,135)
(137,138)(139,144)(140,143);
poly := sub<Sym(144)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s1*s2 >;
References : None.
to this polytope