include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,6}*96b
if this polytope has a name.
Group : SmallGroup(96,226)
Rank : 4
Schlafli Type : {2,4,6}
Number of vertices, edges, etc : 2, 4, 12, 6
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,6,2} of size 192
{2,4,6,4} of size 384
{2,4,6,4} of size 384
{2,4,6,6} of size 576
{2,4,6,4} of size 768
{2,4,6,6} of size 1728
Vertex Figure Of :
{2,2,4,6} of size 192
{3,2,4,6} of size 288
{4,2,4,6} of size 384
{5,2,4,6} of size 480
{6,2,4,6} of size 576
{7,2,4,6} of size 672
{8,2,4,6} of size 768
{9,2,4,6} of size 864
{10,2,4,6} of size 960
{11,2,4,6} of size 1056
{12,2,4,6} of size 1152
{13,2,4,6} of size 1248
{14,2,4,6} of size 1344
{15,2,4,6} of size 1440
{17,2,4,6} of size 1632
{18,2,4,6} of size 1728
{19,2,4,6} of size 1824
{20,2,4,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,6}*192
3-fold covers : {2,4,18}*288c, {2,12,6}*288d
4-fold covers : {4,4,6}*384c, {2,8,6}*384a, {2,4,12}*384b, {4,4,6}*384d, {2,4,6}*384b, {2,4,12}*384c, {2,8,6}*384b, {2,8,6}*384c
5-fold covers : {2,20,6}*480b, {2,4,30}*480c
6-fold covers : {2,4,18}*576, {6,4,6}*576a, {2,12,6}*576a, {2,12,6}*576b
7-fold covers : {2,28,6}*672b, {2,4,42}*672c
8-fold covers : {2,8,12}*768c, {2,8,12}*768d, {4,4,6}*768d, {2,4,12}*768d, {4,4,6}*768e, {4,4,12}*768e, {4,4,12}*768f, {2,8,6}*768d, {2,8,6}*768e, {4,4,6}*768f, {2,4,6}*768a, {2,8,12}*768e, {2,8,12}*768f, {2,4,24}*768c, {2,4,24}*768d, {4,8,6}*768c, {2,8,6}*768f, {2,8,12}*768g, {2,8,12}*768h, {8,4,6}*768c, {2,8,6}*768g, {4,8,6}*768d, {2,4,6}*768b, {2,4,24}*768e, {2,4,12}*768e, {2,4,24}*768f
9-fold covers : {2,4,54}*864c, {2,36,6}*864c, {2,12,18}*864c, {2,12,6}*864d, {6,12,6}*864h
10-fold covers : {10,4,6}*960, {2,20,6}*960c, {2,4,30}*960
11-fold covers : {2,44,6}*1056b, {2,4,66}*1056c
12-fold covers : {4,4,18}*1152c, {2,8,18}*1152a, {2,4,36}*1152b, {4,4,18}*1152d, {2,4,18}*1152b, {2,4,36}*1152c, {2,8,18}*1152b, {2,8,18}*1152c, {2,24,6}*1152a, {4,12,6}*1152d, {6,4,12}*1152b, {2,12,12}*1152f, {2,12,12}*1152g, {12,4,6}*1152c, {2,12,6}*1152b, {2,12,12}*1152i, {4,12,6}*1152g, {6,4,6}*1152a, {6,4,12}*1152d, {2,24,6}*1152b, {2,24,6}*1152c, {2,24,6}*1152d, {6,8,6}*1152a, {2,24,6}*1152e, {6,8,6}*1152c, {4,12,6}*1152j, {2,12,6}*1152f, {2,12,12}*1152k, {4,12,6}*1152l, {2,12,12}*1152l, {6,12,6}*1152f
13-fold covers : {2,52,6}*1248b, {2,4,78}*1248c
14-fold covers : {14,4,6}*1344, {2,28,6}*1344, {2,4,42}*1344
15-fold covers : {2,20,18}*1440b, {2,4,90}*1440c, {2,12,30}*1440d, {2,60,6}*1440d
17-fold covers : {2,68,6}*1632b, {2,4,102}*1632c
18-fold covers : {2,4,54}*1728, {18,4,6}*1728a, {2,36,6}*1728, {6,4,18}*1728b, {2,12,18}*1728a, {2,12,18}*1728b, {6,12,6}*1728a, {2,12,6}*1728a, {2,12,6}*1728b, {6,12,6}*1728e, {6,12,6}*1728f, {6,12,6}*1728g, {6,12,6}*1728h, {2,12,6}*1728c
19-fold covers : {2,76,6}*1824b, {2,4,114}*1824c
20-fold covers : {2,40,6}*1920a, {4,20,6}*1920b, {4,4,30}*1920c, {2,8,30}*1920a, {10,4,12}*1920b, {2,20,12}*1920b, {20,4,6}*1920b, {2,20,6}*1920a, {4,20,6}*1920c, {10,4,6}*1920, {10,4,12}*1920c, {2,40,6}*1920b, {10,8,6}*1920a, {2,40,6}*1920c, {10,8,6}*1920b, {2,20,12}*1920c, {2,4,60}*1920b, {4,4,30}*1920d, {2,4,30}*1920b, {2,4,60}*1920c, {2,8,30}*1920b, {2,8,30}*1920c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (6,8);;
s2 := (5,6)(7,8);;
s3 := (3,5)(4,7)(6,8);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s1*s2*s3*s1*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(8)!(1,2);
s1 := Sym(8)!(6,8);
s2 := Sym(8)!(5,6)(7,8);
s3 := Sym(8)!(3,5)(4,7)(6,8);
poly := sub<Sym(8)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s1*s2*s3*s1*s2*s3 >;
to this polytope