Polytope of Type {48,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {48,12}*1152b
Also Known As : {48,12|2}. if this polytope has another name.
Group : SmallGroup(1152,32078)
Rank : 3
Schlafli Type : {48,12}
Number of vertices, edges, etc : 48, 288, 12
Order of s0s1s2 : 48
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {48,6}*576a, {24,12}*576c
   3-fold quotients : {48,4}*384a, {16,12}*384a
   4-fold quotients : {24,6}*288a, {12,12}*288a
   6-fold quotients : {24,4}*192a, {8,12}*192a, {48,2}*192, {16,6}*192
   8-fold quotients : {6,12}*144a, {12,6}*144a
   9-fold quotients : {16,4}*128a
   12-fold quotients : {4,12}*96a, {12,4}*96a, {24,2}*96, {8,6}*96
   16-fold quotients : {6,6}*72a
   18-fold quotients : {8,4}*64a, {16,2}*64
   24-fold quotients : {2,12}*48, {12,2}*48, {4,6}*48a, {6,4}*48a
   36-fold quotients : {4,4}*32, {8,2}*32
   48-fold quotients : {2,6}*24, {6,2}*24
   72-fold quotients : {2,4}*16, {4,2}*16
   96-fold quotients : {2,3}*12, {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,433)(  2,440)(  3,438)(  4,439)(  5,437)(  6,435)(  7,436)(  8,434)
(  9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)( 16,445)
( 17,443)( 18,450)( 19,460)( 20,467)( 21,465)( 22,466)( 23,464)( 24,462)
( 25,463)( 26,461)( 27,468)( 28,451)( 29,458)( 30,456)( 31,457)( 32,455)
( 33,453)( 34,454)( 35,452)( 36,459)( 37,469)( 38,476)( 39,474)( 40,475)
( 41,473)( 42,471)( 43,472)( 44,470)( 45,477)( 46,478)( 47,485)( 48,483)
( 49,484)( 50,482)( 51,480)( 52,481)( 53,479)( 54,486)( 55,496)( 56,503)
( 57,501)( 58,502)( 59,500)( 60,498)( 61,499)( 62,497)( 63,504)( 64,487)
( 65,494)( 66,492)( 67,493)( 68,491)( 69,489)( 70,490)( 71,488)( 72,495)
( 73,523)( 74,530)( 75,528)( 76,529)( 77,527)( 78,525)( 79,526)( 80,524)
( 81,531)( 82,532)( 83,539)( 84,537)( 85,538)( 86,536)( 87,534)( 88,535)
( 89,533)( 90,540)( 91,505)( 92,512)( 93,510)( 94,511)( 95,509)( 96,507)
( 97,508)( 98,506)( 99,513)(100,514)(101,521)(102,519)(103,520)(104,518)
(105,516)(106,517)(107,515)(108,522)(109,559)(110,566)(111,564)(112,565)
(113,563)(114,561)(115,562)(116,560)(117,567)(118,568)(119,575)(120,573)
(121,574)(122,572)(123,570)(124,571)(125,569)(126,576)(127,541)(128,548)
(129,546)(130,547)(131,545)(132,543)(133,544)(134,542)(135,549)(136,550)
(137,557)(138,555)(139,556)(140,554)(141,552)(142,553)(143,551)(144,558)
(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)(152,290)
(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)(160,301)
(161,299)(162,306)(163,316)(164,323)(165,321)(166,322)(167,320)(168,318)
(169,319)(170,317)(171,324)(172,307)(173,314)(174,312)(175,313)(176,311)
(177,309)(178,310)(179,308)(180,315)(181,325)(182,332)(183,330)(184,331)
(185,329)(186,327)(187,328)(188,326)(189,333)(190,334)(191,341)(192,339)
(193,340)(194,338)(195,336)(196,337)(197,335)(198,342)(199,352)(200,359)
(201,357)(202,358)(203,356)(204,354)(205,355)(206,353)(207,360)(208,343)
(209,350)(210,348)(211,349)(212,347)(213,345)(214,346)(215,344)(216,351)
(217,379)(218,386)(219,384)(220,385)(221,383)(222,381)(223,382)(224,380)
(225,387)(226,388)(227,395)(228,393)(229,394)(230,392)(231,390)(232,391)
(233,389)(234,396)(235,361)(236,368)(237,366)(238,367)(239,365)(240,363)
(241,364)(242,362)(243,369)(244,370)(245,377)(246,375)(247,376)(248,374)
(249,372)(250,373)(251,371)(252,378)(253,415)(254,422)(255,420)(256,421)
(257,419)(258,417)(259,418)(260,416)(261,423)(262,424)(263,431)(264,429)
(265,430)(266,428)(267,426)(268,427)(269,425)(270,432)(271,397)(272,404)
(273,402)(274,403)(275,401)(276,399)(277,400)(278,398)(279,405)(280,406)
(281,413)(282,411)(283,412)(284,410)(285,408)(286,409)(287,407)(288,414);;
s1 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 34)( 26, 36)
( 27, 35)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)
( 53, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)( 61, 70)
( 62, 72)( 63, 71)( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)( 78, 92)
( 79, 97)( 80, 99)( 81, 98)( 82,103)( 83,105)( 84,104)( 85,100)( 86,102)
( 87,101)( 88,106)( 89,108)( 90,107)(109,130)(110,132)(111,131)(112,127)
(113,129)(114,128)(115,133)(116,135)(117,134)(118,139)(119,141)(120,140)
(121,136)(122,138)(123,137)(124,142)(125,144)(126,143)(145,184)(146,186)
(147,185)(148,181)(149,183)(150,182)(151,187)(152,189)(153,188)(154,193)
(155,195)(156,194)(157,190)(158,192)(159,191)(160,196)(161,198)(162,197)
(163,211)(164,213)(165,212)(166,208)(167,210)(168,209)(169,214)(170,216)
(171,215)(172,202)(173,204)(174,203)(175,199)(176,201)(177,200)(178,205)
(179,207)(180,206)(217,274)(218,276)(219,275)(220,271)(221,273)(222,272)
(223,277)(224,279)(225,278)(226,283)(227,285)(228,284)(229,280)(230,282)
(231,281)(232,286)(233,288)(234,287)(235,256)(236,258)(237,257)(238,253)
(239,255)(240,254)(241,259)(242,261)(243,260)(244,265)(245,267)(246,266)
(247,262)(248,264)(249,263)(250,268)(251,270)(252,269)(289,364)(290,366)
(291,365)(292,361)(293,363)(294,362)(295,367)(296,369)(297,368)(298,373)
(299,375)(300,374)(301,370)(302,372)(303,371)(304,376)(305,378)(306,377)
(307,391)(308,393)(309,392)(310,388)(311,390)(312,389)(313,394)(314,396)
(315,395)(316,382)(317,384)(318,383)(319,379)(320,381)(321,380)(322,385)
(323,387)(324,386)(325,400)(326,402)(327,401)(328,397)(329,399)(330,398)
(331,403)(332,405)(333,404)(334,409)(335,411)(336,410)(337,406)(338,408)
(339,407)(340,412)(341,414)(342,413)(343,427)(344,429)(345,428)(346,424)
(347,426)(348,425)(349,430)(350,432)(351,431)(352,418)(353,420)(354,419)
(355,415)(356,417)(357,416)(358,421)(359,423)(360,422)(433,544)(434,546)
(435,545)(436,541)(437,543)(438,542)(439,547)(440,549)(441,548)(442,553)
(443,555)(444,554)(445,550)(446,552)(447,551)(448,556)(449,558)(450,557)
(451,571)(452,573)(453,572)(454,568)(455,570)(456,569)(457,574)(458,576)
(459,575)(460,562)(461,564)(462,563)(463,559)(464,561)(465,560)(466,565)
(467,567)(468,566)(469,508)(470,510)(471,509)(472,505)(473,507)(474,506)
(475,511)(476,513)(477,512)(478,517)(479,519)(480,518)(481,514)(482,516)
(483,515)(484,520)(485,522)(486,521)(487,535)(488,537)(489,536)(490,532)
(491,534)(492,533)(493,538)(494,540)(495,539)(496,526)(497,528)(498,527)
(499,523)(500,525)(501,524)(502,529)(503,531)(504,530);;
s2 := (  1,149)(  2,151)(  3,147)(  4,152)(  5,145)(  6,150)(  7,146)(  8,148)
(  9,153)( 10,158)( 11,160)( 12,156)( 13,161)( 14,154)( 15,159)( 16,155)
( 17,157)( 18,162)( 19,167)( 20,169)( 21,165)( 22,170)( 23,163)( 24,168)
( 25,164)( 26,166)( 27,171)( 28,176)( 29,178)( 30,174)( 31,179)( 32,172)
( 33,177)( 34,173)( 35,175)( 36,180)( 37,185)( 38,187)( 39,183)( 40,188)
( 41,181)( 42,186)( 43,182)( 44,184)( 45,189)( 46,194)( 47,196)( 48,192)
( 49,197)( 50,190)( 51,195)( 52,191)( 53,193)( 54,198)( 55,203)( 56,205)
( 57,201)( 58,206)( 59,199)( 60,204)( 61,200)( 62,202)( 63,207)( 64,212)
( 65,214)( 66,210)( 67,215)( 68,208)( 69,213)( 70,209)( 71,211)( 72,216)
( 73,221)( 74,223)( 75,219)( 76,224)( 77,217)( 78,222)( 79,218)( 80,220)
( 81,225)( 82,230)( 83,232)( 84,228)( 85,233)( 86,226)( 87,231)( 88,227)
( 89,229)( 90,234)( 91,239)( 92,241)( 93,237)( 94,242)( 95,235)( 96,240)
( 97,236)( 98,238)( 99,243)(100,248)(101,250)(102,246)(103,251)(104,244)
(105,249)(106,245)(107,247)(108,252)(109,257)(110,259)(111,255)(112,260)
(113,253)(114,258)(115,254)(116,256)(117,261)(118,266)(119,268)(120,264)
(121,269)(122,262)(123,267)(124,263)(125,265)(126,270)(127,275)(128,277)
(129,273)(130,278)(131,271)(132,276)(133,272)(134,274)(135,279)(136,284)
(137,286)(138,282)(139,287)(140,280)(141,285)(142,281)(143,283)(144,288)
(289,437)(290,439)(291,435)(292,440)(293,433)(294,438)(295,434)(296,436)
(297,441)(298,446)(299,448)(300,444)(301,449)(302,442)(303,447)(304,443)
(305,445)(306,450)(307,455)(308,457)(309,453)(310,458)(311,451)(312,456)
(313,452)(314,454)(315,459)(316,464)(317,466)(318,462)(319,467)(320,460)
(321,465)(322,461)(323,463)(324,468)(325,473)(326,475)(327,471)(328,476)
(329,469)(330,474)(331,470)(332,472)(333,477)(334,482)(335,484)(336,480)
(337,485)(338,478)(339,483)(340,479)(341,481)(342,486)(343,491)(344,493)
(345,489)(346,494)(347,487)(348,492)(349,488)(350,490)(351,495)(352,500)
(353,502)(354,498)(355,503)(356,496)(357,501)(358,497)(359,499)(360,504)
(361,509)(362,511)(363,507)(364,512)(365,505)(366,510)(367,506)(368,508)
(369,513)(370,518)(371,520)(372,516)(373,521)(374,514)(375,519)(376,515)
(377,517)(378,522)(379,527)(380,529)(381,525)(382,530)(383,523)(384,528)
(385,524)(386,526)(387,531)(388,536)(389,538)(390,534)(391,539)(392,532)
(393,537)(394,533)(395,535)(396,540)(397,545)(398,547)(399,543)(400,548)
(401,541)(402,546)(403,542)(404,544)(405,549)(406,554)(407,556)(408,552)
(409,557)(410,550)(411,555)(412,551)(413,553)(414,558)(415,563)(416,565)
(417,561)(418,566)(419,559)(420,564)(421,560)(422,562)(423,567)(424,572)
(425,574)(426,570)(427,575)(428,568)(429,573)(430,569)(431,571)(432,576);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,433)(  2,440)(  3,438)(  4,439)(  5,437)(  6,435)(  7,436)
(  8,434)(  9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)
( 16,445)( 17,443)( 18,450)( 19,460)( 20,467)( 21,465)( 22,466)( 23,464)
( 24,462)( 25,463)( 26,461)( 27,468)( 28,451)( 29,458)( 30,456)( 31,457)
( 32,455)( 33,453)( 34,454)( 35,452)( 36,459)( 37,469)( 38,476)( 39,474)
( 40,475)( 41,473)( 42,471)( 43,472)( 44,470)( 45,477)( 46,478)( 47,485)
( 48,483)( 49,484)( 50,482)( 51,480)( 52,481)( 53,479)( 54,486)( 55,496)
( 56,503)( 57,501)( 58,502)( 59,500)( 60,498)( 61,499)( 62,497)( 63,504)
( 64,487)( 65,494)( 66,492)( 67,493)( 68,491)( 69,489)( 70,490)( 71,488)
( 72,495)( 73,523)( 74,530)( 75,528)( 76,529)( 77,527)( 78,525)( 79,526)
( 80,524)( 81,531)( 82,532)( 83,539)( 84,537)( 85,538)( 86,536)( 87,534)
( 88,535)( 89,533)( 90,540)( 91,505)( 92,512)( 93,510)( 94,511)( 95,509)
( 96,507)( 97,508)( 98,506)( 99,513)(100,514)(101,521)(102,519)(103,520)
(104,518)(105,516)(106,517)(107,515)(108,522)(109,559)(110,566)(111,564)
(112,565)(113,563)(114,561)(115,562)(116,560)(117,567)(118,568)(119,575)
(120,573)(121,574)(122,572)(123,570)(124,571)(125,569)(126,576)(127,541)
(128,548)(129,546)(130,547)(131,545)(132,543)(133,544)(134,542)(135,549)
(136,550)(137,557)(138,555)(139,556)(140,554)(141,552)(142,553)(143,551)
(144,558)(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)
(152,290)(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)
(160,301)(161,299)(162,306)(163,316)(164,323)(165,321)(166,322)(167,320)
(168,318)(169,319)(170,317)(171,324)(172,307)(173,314)(174,312)(175,313)
(176,311)(177,309)(178,310)(179,308)(180,315)(181,325)(182,332)(183,330)
(184,331)(185,329)(186,327)(187,328)(188,326)(189,333)(190,334)(191,341)
(192,339)(193,340)(194,338)(195,336)(196,337)(197,335)(198,342)(199,352)
(200,359)(201,357)(202,358)(203,356)(204,354)(205,355)(206,353)(207,360)
(208,343)(209,350)(210,348)(211,349)(212,347)(213,345)(214,346)(215,344)
(216,351)(217,379)(218,386)(219,384)(220,385)(221,383)(222,381)(223,382)
(224,380)(225,387)(226,388)(227,395)(228,393)(229,394)(230,392)(231,390)
(232,391)(233,389)(234,396)(235,361)(236,368)(237,366)(238,367)(239,365)
(240,363)(241,364)(242,362)(243,369)(244,370)(245,377)(246,375)(247,376)
(248,374)(249,372)(250,373)(251,371)(252,378)(253,415)(254,422)(255,420)
(256,421)(257,419)(258,417)(259,418)(260,416)(261,423)(262,424)(263,431)
(264,429)(265,430)(266,428)(267,426)(268,427)(269,425)(270,432)(271,397)
(272,404)(273,402)(274,403)(275,401)(276,399)(277,400)(278,398)(279,405)
(280,406)(281,413)(282,411)(283,412)(284,410)(285,408)(286,409)(287,407)
(288,414);
s1 := Sym(576)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 34)
( 26, 36)( 27, 35)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)
( 48, 50)( 53, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)
( 61, 70)( 62, 72)( 63, 71)( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)
( 78, 92)( 79, 97)( 80, 99)( 81, 98)( 82,103)( 83,105)( 84,104)( 85,100)
( 86,102)( 87,101)( 88,106)( 89,108)( 90,107)(109,130)(110,132)(111,131)
(112,127)(113,129)(114,128)(115,133)(116,135)(117,134)(118,139)(119,141)
(120,140)(121,136)(122,138)(123,137)(124,142)(125,144)(126,143)(145,184)
(146,186)(147,185)(148,181)(149,183)(150,182)(151,187)(152,189)(153,188)
(154,193)(155,195)(156,194)(157,190)(158,192)(159,191)(160,196)(161,198)
(162,197)(163,211)(164,213)(165,212)(166,208)(167,210)(168,209)(169,214)
(170,216)(171,215)(172,202)(173,204)(174,203)(175,199)(176,201)(177,200)
(178,205)(179,207)(180,206)(217,274)(218,276)(219,275)(220,271)(221,273)
(222,272)(223,277)(224,279)(225,278)(226,283)(227,285)(228,284)(229,280)
(230,282)(231,281)(232,286)(233,288)(234,287)(235,256)(236,258)(237,257)
(238,253)(239,255)(240,254)(241,259)(242,261)(243,260)(244,265)(245,267)
(246,266)(247,262)(248,264)(249,263)(250,268)(251,270)(252,269)(289,364)
(290,366)(291,365)(292,361)(293,363)(294,362)(295,367)(296,369)(297,368)
(298,373)(299,375)(300,374)(301,370)(302,372)(303,371)(304,376)(305,378)
(306,377)(307,391)(308,393)(309,392)(310,388)(311,390)(312,389)(313,394)
(314,396)(315,395)(316,382)(317,384)(318,383)(319,379)(320,381)(321,380)
(322,385)(323,387)(324,386)(325,400)(326,402)(327,401)(328,397)(329,399)
(330,398)(331,403)(332,405)(333,404)(334,409)(335,411)(336,410)(337,406)
(338,408)(339,407)(340,412)(341,414)(342,413)(343,427)(344,429)(345,428)
(346,424)(347,426)(348,425)(349,430)(350,432)(351,431)(352,418)(353,420)
(354,419)(355,415)(356,417)(357,416)(358,421)(359,423)(360,422)(433,544)
(434,546)(435,545)(436,541)(437,543)(438,542)(439,547)(440,549)(441,548)
(442,553)(443,555)(444,554)(445,550)(446,552)(447,551)(448,556)(449,558)
(450,557)(451,571)(452,573)(453,572)(454,568)(455,570)(456,569)(457,574)
(458,576)(459,575)(460,562)(461,564)(462,563)(463,559)(464,561)(465,560)
(466,565)(467,567)(468,566)(469,508)(470,510)(471,509)(472,505)(473,507)
(474,506)(475,511)(476,513)(477,512)(478,517)(479,519)(480,518)(481,514)
(482,516)(483,515)(484,520)(485,522)(486,521)(487,535)(488,537)(489,536)
(490,532)(491,534)(492,533)(493,538)(494,540)(495,539)(496,526)(497,528)
(498,527)(499,523)(500,525)(501,524)(502,529)(503,531)(504,530);
s2 := Sym(576)!(  1,149)(  2,151)(  3,147)(  4,152)(  5,145)(  6,150)(  7,146)
(  8,148)(  9,153)( 10,158)( 11,160)( 12,156)( 13,161)( 14,154)( 15,159)
( 16,155)( 17,157)( 18,162)( 19,167)( 20,169)( 21,165)( 22,170)( 23,163)
( 24,168)( 25,164)( 26,166)( 27,171)( 28,176)( 29,178)( 30,174)( 31,179)
( 32,172)( 33,177)( 34,173)( 35,175)( 36,180)( 37,185)( 38,187)( 39,183)
( 40,188)( 41,181)( 42,186)( 43,182)( 44,184)( 45,189)( 46,194)( 47,196)
( 48,192)( 49,197)( 50,190)( 51,195)( 52,191)( 53,193)( 54,198)( 55,203)
( 56,205)( 57,201)( 58,206)( 59,199)( 60,204)( 61,200)( 62,202)( 63,207)
( 64,212)( 65,214)( 66,210)( 67,215)( 68,208)( 69,213)( 70,209)( 71,211)
( 72,216)( 73,221)( 74,223)( 75,219)( 76,224)( 77,217)( 78,222)( 79,218)
( 80,220)( 81,225)( 82,230)( 83,232)( 84,228)( 85,233)( 86,226)( 87,231)
( 88,227)( 89,229)( 90,234)( 91,239)( 92,241)( 93,237)( 94,242)( 95,235)
( 96,240)( 97,236)( 98,238)( 99,243)(100,248)(101,250)(102,246)(103,251)
(104,244)(105,249)(106,245)(107,247)(108,252)(109,257)(110,259)(111,255)
(112,260)(113,253)(114,258)(115,254)(116,256)(117,261)(118,266)(119,268)
(120,264)(121,269)(122,262)(123,267)(124,263)(125,265)(126,270)(127,275)
(128,277)(129,273)(130,278)(131,271)(132,276)(133,272)(134,274)(135,279)
(136,284)(137,286)(138,282)(139,287)(140,280)(141,285)(142,281)(143,283)
(144,288)(289,437)(290,439)(291,435)(292,440)(293,433)(294,438)(295,434)
(296,436)(297,441)(298,446)(299,448)(300,444)(301,449)(302,442)(303,447)
(304,443)(305,445)(306,450)(307,455)(308,457)(309,453)(310,458)(311,451)
(312,456)(313,452)(314,454)(315,459)(316,464)(317,466)(318,462)(319,467)
(320,460)(321,465)(322,461)(323,463)(324,468)(325,473)(326,475)(327,471)
(328,476)(329,469)(330,474)(331,470)(332,472)(333,477)(334,482)(335,484)
(336,480)(337,485)(338,478)(339,483)(340,479)(341,481)(342,486)(343,491)
(344,493)(345,489)(346,494)(347,487)(348,492)(349,488)(350,490)(351,495)
(352,500)(353,502)(354,498)(355,503)(356,496)(357,501)(358,497)(359,499)
(360,504)(361,509)(362,511)(363,507)(364,512)(365,505)(366,510)(367,506)
(368,508)(369,513)(370,518)(371,520)(372,516)(373,521)(374,514)(375,519)
(376,515)(377,517)(378,522)(379,527)(380,529)(381,525)(382,530)(383,523)
(384,528)(385,524)(386,526)(387,531)(388,536)(389,538)(390,534)(391,539)
(392,532)(393,537)(394,533)(395,535)(396,540)(397,545)(398,547)(399,543)
(400,548)(401,541)(402,546)(403,542)(404,544)(405,549)(406,554)(407,556)
(408,552)(409,557)(410,550)(411,555)(412,551)(413,553)(414,558)(415,563)
(416,565)(417,561)(418,566)(419,559)(420,564)(421,560)(422,562)(423,567)
(424,572)(425,574)(426,570)(427,575)(428,568)(429,573)(430,569)(431,571)
(432,576);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope