include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {48,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {48,12}*1152c
if this polytope has a name.
Group : SmallGroup(1152,32082)
Rank : 3
Schlafli Type : {48,12}
Number of vertices, edges, etc : 48, 288, 12
Order of s0s1s2 : 48
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {24,12}*576b, {48,6}*576c
3-fold quotients : {16,12}*384a
4-fold quotients : {12,12}*288b, {24,6}*288c
6-fold quotients : {8,12}*192a, {16,6}*192
8-fold quotients : {6,12}*144b, {12,6}*144c
9-fold quotients : {16,4}*128a
12-fold quotients : {4,12}*96a, {8,6}*96
16-fold quotients : {6,6}*72b
18-fold quotients : {8,4}*64a, {16,2}*64
24-fold quotients : {2,12}*48, {4,6}*48a
32-fold quotients : {6,3}*36
36-fold quotients : {4,4}*32, {8,2}*32
48-fold quotients : {2,6}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,3}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,289)( 2,294)( 3,296)( 4,292)( 5,297)( 6,290)( 7,295)( 8,291)
( 9,293)( 10,298)( 11,303)( 12,305)( 13,301)( 14,306)( 15,299)( 16,304)
( 17,300)( 18,302)( 19,316)( 20,321)( 21,323)( 22,319)( 23,324)( 24,317)
( 25,322)( 26,318)( 27,320)( 28,307)( 29,312)( 30,314)( 31,310)( 32,315)
( 33,308)( 34,313)( 35,309)( 36,311)( 37,325)( 38,330)( 39,332)( 40,328)
( 41,333)( 42,326)( 43,331)( 44,327)( 45,329)( 46,334)( 47,339)( 48,341)
( 49,337)( 50,342)( 51,335)( 52,340)( 53,336)( 54,338)( 55,352)( 56,357)
( 57,359)( 58,355)( 59,360)( 60,353)( 61,358)( 62,354)( 63,356)( 64,343)
( 65,348)( 66,350)( 67,346)( 68,351)( 69,344)( 70,349)( 71,345)( 72,347)
( 73,379)( 74,384)( 75,386)( 76,382)( 77,387)( 78,380)( 79,385)( 80,381)
( 81,383)( 82,388)( 83,393)( 84,395)( 85,391)( 86,396)( 87,389)( 88,394)
( 89,390)( 90,392)( 91,361)( 92,366)( 93,368)( 94,364)( 95,369)( 96,362)
( 97,367)( 98,363)( 99,365)(100,370)(101,375)(102,377)(103,373)(104,378)
(105,371)(106,376)(107,372)(108,374)(109,415)(110,420)(111,422)(112,418)
(113,423)(114,416)(115,421)(116,417)(117,419)(118,424)(119,429)(120,431)
(121,427)(122,432)(123,425)(124,430)(125,426)(126,428)(127,397)(128,402)
(129,404)(130,400)(131,405)(132,398)(133,403)(134,399)(135,401)(136,406)
(137,411)(138,413)(139,409)(140,414)(141,407)(142,412)(143,408)(144,410)
(145,433)(146,438)(147,440)(148,436)(149,441)(150,434)(151,439)(152,435)
(153,437)(154,442)(155,447)(156,449)(157,445)(158,450)(159,443)(160,448)
(161,444)(162,446)(163,460)(164,465)(165,467)(166,463)(167,468)(168,461)
(169,466)(170,462)(171,464)(172,451)(173,456)(174,458)(175,454)(176,459)
(177,452)(178,457)(179,453)(180,455)(181,469)(182,474)(183,476)(184,472)
(185,477)(186,470)(187,475)(188,471)(189,473)(190,478)(191,483)(192,485)
(193,481)(194,486)(195,479)(196,484)(197,480)(198,482)(199,496)(200,501)
(201,503)(202,499)(203,504)(204,497)(205,502)(206,498)(207,500)(208,487)
(209,492)(210,494)(211,490)(212,495)(213,488)(214,493)(215,489)(216,491)
(217,523)(218,528)(219,530)(220,526)(221,531)(222,524)(223,529)(224,525)
(225,527)(226,532)(227,537)(228,539)(229,535)(230,540)(231,533)(232,538)
(233,534)(234,536)(235,505)(236,510)(237,512)(238,508)(239,513)(240,506)
(241,511)(242,507)(243,509)(244,514)(245,519)(246,521)(247,517)(248,522)
(249,515)(250,520)(251,516)(252,518)(253,559)(254,564)(255,566)(256,562)
(257,567)(258,560)(259,565)(260,561)(261,563)(262,568)(263,573)(264,575)
(265,571)(266,576)(267,569)(268,574)(269,570)(270,572)(271,541)(272,546)
(273,548)(274,544)(275,549)(276,542)(277,547)(278,543)(279,545)(280,550)
(281,555)(282,557)(283,553)(284,558)(285,551)(286,556)(287,552)(288,554);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)( 26, 31)
( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)
( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)( 61, 68)
( 62, 67)( 63, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)( 78, 99)
( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)( 86,106)
( 87,108)( 88,104)( 89,103)( 90,105)(109,128)(110,127)(111,129)(112,134)
(113,133)(114,135)(115,131)(116,130)(117,132)(118,137)(119,136)(120,138)
(121,143)(122,142)(123,144)(124,140)(125,139)(126,141)(145,182)(146,181)
(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)(154,191)
(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)(162,195)
(163,209)(164,208)(165,210)(166,215)(167,214)(168,216)(169,212)(170,211)
(171,213)(172,200)(173,199)(174,201)(175,206)(176,205)(177,207)(178,203)
(179,202)(180,204)(217,272)(218,271)(219,273)(220,278)(221,277)(222,279)
(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)(230,286)
(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)(238,260)
(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)(246,264)
(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)(290,361)
(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)(298,371)
(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)(306,375)
(307,389)(308,388)(309,390)(310,395)(311,394)(312,396)(313,392)(314,391)
(315,393)(316,380)(317,379)(318,381)(319,386)(320,385)(321,387)(322,383)
(323,382)(324,384)(325,398)(326,397)(327,399)(328,404)(329,403)(330,405)
(331,401)(332,400)(333,402)(334,407)(335,406)(336,408)(337,413)(338,412)
(339,414)(340,410)(341,409)(342,411)(343,425)(344,424)(345,426)(346,431)
(347,430)(348,432)(349,428)(350,427)(351,429)(352,416)(353,415)(354,417)
(355,422)(356,421)(357,423)(358,419)(359,418)(360,420)(433,542)(434,541)
(435,543)(436,548)(437,547)(438,549)(439,545)(440,544)(441,546)(442,551)
(443,550)(444,552)(445,557)(446,556)(447,558)(448,554)(449,553)(450,555)
(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)(458,571)
(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)(466,563)
(467,562)(468,564)(469,506)(470,505)(471,507)(472,512)(473,511)(474,513)
(475,509)(476,508)(477,510)(478,515)(479,514)(480,516)(481,521)(482,520)
(483,522)(484,518)(485,517)(486,519)(487,533)(488,532)(489,534)(490,539)
(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)(498,525)
(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);;
s2 := ( 1,145)( 2,147)( 3,146)( 4,151)( 5,153)( 6,152)( 7,148)( 8,150)
( 9,149)( 10,154)( 11,156)( 12,155)( 13,160)( 14,162)( 15,161)( 16,157)
( 17,159)( 18,158)( 19,163)( 20,165)( 21,164)( 22,169)( 23,171)( 24,170)
( 25,166)( 26,168)( 27,167)( 28,172)( 29,174)( 30,173)( 31,178)( 32,180)
( 33,179)( 34,175)( 35,177)( 36,176)( 37,181)( 38,183)( 39,182)( 40,187)
( 41,189)( 42,188)( 43,184)( 44,186)( 45,185)( 46,190)( 47,192)( 48,191)
( 49,196)( 50,198)( 51,197)( 52,193)( 53,195)( 54,194)( 55,199)( 56,201)
( 57,200)( 58,205)( 59,207)( 60,206)( 61,202)( 62,204)( 63,203)( 64,208)
( 65,210)( 66,209)( 67,214)( 68,216)( 69,215)( 70,211)( 71,213)( 72,212)
( 73,217)( 74,219)( 75,218)( 76,223)( 77,225)( 78,224)( 79,220)( 80,222)
( 81,221)( 82,226)( 83,228)( 84,227)( 85,232)( 86,234)( 87,233)( 88,229)
( 89,231)( 90,230)( 91,235)( 92,237)( 93,236)( 94,241)( 95,243)( 96,242)
( 97,238)( 98,240)( 99,239)(100,244)(101,246)(102,245)(103,250)(104,252)
(105,251)(106,247)(107,249)(108,248)(109,253)(110,255)(111,254)(112,259)
(113,261)(114,260)(115,256)(116,258)(117,257)(118,262)(119,264)(120,263)
(121,268)(122,270)(123,269)(124,265)(125,267)(126,266)(127,271)(128,273)
(129,272)(130,277)(131,279)(132,278)(133,274)(134,276)(135,275)(136,280)
(137,282)(138,281)(139,286)(140,288)(141,287)(142,283)(143,285)(144,284)
(289,433)(290,435)(291,434)(292,439)(293,441)(294,440)(295,436)(296,438)
(297,437)(298,442)(299,444)(300,443)(301,448)(302,450)(303,449)(304,445)
(305,447)(306,446)(307,451)(308,453)(309,452)(310,457)(311,459)(312,458)
(313,454)(314,456)(315,455)(316,460)(317,462)(318,461)(319,466)(320,468)
(321,467)(322,463)(323,465)(324,464)(325,469)(326,471)(327,470)(328,475)
(329,477)(330,476)(331,472)(332,474)(333,473)(334,478)(335,480)(336,479)
(337,484)(338,486)(339,485)(340,481)(341,483)(342,482)(343,487)(344,489)
(345,488)(346,493)(347,495)(348,494)(349,490)(350,492)(351,491)(352,496)
(353,498)(354,497)(355,502)(356,504)(357,503)(358,499)(359,501)(360,500)
(361,505)(362,507)(363,506)(364,511)(365,513)(366,512)(367,508)(368,510)
(369,509)(370,514)(371,516)(372,515)(373,520)(374,522)(375,521)(376,517)
(377,519)(378,518)(379,523)(380,525)(381,524)(382,529)(383,531)(384,530)
(385,526)(386,528)(387,527)(388,532)(389,534)(390,533)(391,538)(392,540)
(393,539)(394,535)(395,537)(396,536)(397,541)(398,543)(399,542)(400,547)
(401,549)(402,548)(403,544)(404,546)(405,545)(406,550)(407,552)(408,551)
(409,556)(410,558)(411,557)(412,553)(413,555)(414,554)(415,559)(416,561)
(417,560)(418,565)(419,567)(420,566)(421,562)(422,564)(423,563)(424,568)
(425,570)(426,569)(427,574)(428,576)(429,575)(430,571)(431,573)(432,572);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,289)( 2,294)( 3,296)( 4,292)( 5,297)( 6,290)( 7,295)
( 8,291)( 9,293)( 10,298)( 11,303)( 12,305)( 13,301)( 14,306)( 15,299)
( 16,304)( 17,300)( 18,302)( 19,316)( 20,321)( 21,323)( 22,319)( 23,324)
( 24,317)( 25,322)( 26,318)( 27,320)( 28,307)( 29,312)( 30,314)( 31,310)
( 32,315)( 33,308)( 34,313)( 35,309)( 36,311)( 37,325)( 38,330)( 39,332)
( 40,328)( 41,333)( 42,326)( 43,331)( 44,327)( 45,329)( 46,334)( 47,339)
( 48,341)( 49,337)( 50,342)( 51,335)( 52,340)( 53,336)( 54,338)( 55,352)
( 56,357)( 57,359)( 58,355)( 59,360)( 60,353)( 61,358)( 62,354)( 63,356)
( 64,343)( 65,348)( 66,350)( 67,346)( 68,351)( 69,344)( 70,349)( 71,345)
( 72,347)( 73,379)( 74,384)( 75,386)( 76,382)( 77,387)( 78,380)( 79,385)
( 80,381)( 81,383)( 82,388)( 83,393)( 84,395)( 85,391)( 86,396)( 87,389)
( 88,394)( 89,390)( 90,392)( 91,361)( 92,366)( 93,368)( 94,364)( 95,369)
( 96,362)( 97,367)( 98,363)( 99,365)(100,370)(101,375)(102,377)(103,373)
(104,378)(105,371)(106,376)(107,372)(108,374)(109,415)(110,420)(111,422)
(112,418)(113,423)(114,416)(115,421)(116,417)(117,419)(118,424)(119,429)
(120,431)(121,427)(122,432)(123,425)(124,430)(125,426)(126,428)(127,397)
(128,402)(129,404)(130,400)(131,405)(132,398)(133,403)(134,399)(135,401)
(136,406)(137,411)(138,413)(139,409)(140,414)(141,407)(142,412)(143,408)
(144,410)(145,433)(146,438)(147,440)(148,436)(149,441)(150,434)(151,439)
(152,435)(153,437)(154,442)(155,447)(156,449)(157,445)(158,450)(159,443)
(160,448)(161,444)(162,446)(163,460)(164,465)(165,467)(166,463)(167,468)
(168,461)(169,466)(170,462)(171,464)(172,451)(173,456)(174,458)(175,454)
(176,459)(177,452)(178,457)(179,453)(180,455)(181,469)(182,474)(183,476)
(184,472)(185,477)(186,470)(187,475)(188,471)(189,473)(190,478)(191,483)
(192,485)(193,481)(194,486)(195,479)(196,484)(197,480)(198,482)(199,496)
(200,501)(201,503)(202,499)(203,504)(204,497)(205,502)(206,498)(207,500)
(208,487)(209,492)(210,494)(211,490)(212,495)(213,488)(214,493)(215,489)
(216,491)(217,523)(218,528)(219,530)(220,526)(221,531)(222,524)(223,529)
(224,525)(225,527)(226,532)(227,537)(228,539)(229,535)(230,540)(231,533)
(232,538)(233,534)(234,536)(235,505)(236,510)(237,512)(238,508)(239,513)
(240,506)(241,511)(242,507)(243,509)(244,514)(245,519)(246,521)(247,517)
(248,522)(249,515)(250,520)(251,516)(252,518)(253,559)(254,564)(255,566)
(256,562)(257,567)(258,560)(259,565)(260,561)(261,563)(262,568)(263,573)
(264,575)(265,571)(266,576)(267,569)(268,574)(269,570)(270,572)(271,541)
(272,546)(273,548)(274,544)(275,549)(276,542)(277,547)(278,543)(279,545)
(280,550)(281,555)(282,557)(283,553)(284,558)(285,551)(286,556)(287,552)
(288,554);
s1 := Sym(576)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)
( 26, 31)( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)
( 50, 52)( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 98)( 77, 97)
( 78, 99)( 79, 95)( 80, 94)( 81, 96)( 82,101)( 83,100)( 84,102)( 85,107)
( 86,106)( 87,108)( 88,104)( 89,103)( 90,105)(109,128)(110,127)(111,129)
(112,134)(113,133)(114,135)(115,131)(116,130)(117,132)(118,137)(119,136)
(120,138)(121,143)(122,142)(123,144)(124,140)(125,139)(126,141)(145,182)
(146,181)(147,183)(148,188)(149,187)(150,189)(151,185)(152,184)(153,186)
(154,191)(155,190)(156,192)(157,197)(158,196)(159,198)(160,194)(161,193)
(162,195)(163,209)(164,208)(165,210)(166,215)(167,214)(168,216)(169,212)
(170,211)(171,213)(172,200)(173,199)(174,201)(175,206)(176,205)(177,207)
(178,203)(179,202)(180,204)(217,272)(218,271)(219,273)(220,278)(221,277)
(222,279)(223,275)(224,274)(225,276)(226,281)(227,280)(228,282)(229,287)
(230,286)(231,288)(232,284)(233,283)(234,285)(235,254)(236,253)(237,255)
(238,260)(239,259)(240,261)(241,257)(242,256)(243,258)(244,263)(245,262)
(246,264)(247,269)(248,268)(249,270)(250,266)(251,265)(252,267)(289,362)
(290,361)(291,363)(292,368)(293,367)(294,369)(295,365)(296,364)(297,366)
(298,371)(299,370)(300,372)(301,377)(302,376)(303,378)(304,374)(305,373)
(306,375)(307,389)(308,388)(309,390)(310,395)(311,394)(312,396)(313,392)
(314,391)(315,393)(316,380)(317,379)(318,381)(319,386)(320,385)(321,387)
(322,383)(323,382)(324,384)(325,398)(326,397)(327,399)(328,404)(329,403)
(330,405)(331,401)(332,400)(333,402)(334,407)(335,406)(336,408)(337,413)
(338,412)(339,414)(340,410)(341,409)(342,411)(343,425)(344,424)(345,426)
(346,431)(347,430)(348,432)(349,428)(350,427)(351,429)(352,416)(353,415)
(354,417)(355,422)(356,421)(357,423)(358,419)(359,418)(360,420)(433,542)
(434,541)(435,543)(436,548)(437,547)(438,549)(439,545)(440,544)(441,546)
(442,551)(443,550)(444,552)(445,557)(446,556)(447,558)(448,554)(449,553)
(450,555)(451,569)(452,568)(453,570)(454,575)(455,574)(456,576)(457,572)
(458,571)(459,573)(460,560)(461,559)(462,561)(463,566)(464,565)(465,567)
(466,563)(467,562)(468,564)(469,506)(470,505)(471,507)(472,512)(473,511)
(474,513)(475,509)(476,508)(477,510)(478,515)(479,514)(480,516)(481,521)
(482,520)(483,522)(484,518)(485,517)(486,519)(487,533)(488,532)(489,534)
(490,539)(491,538)(492,540)(493,536)(494,535)(495,537)(496,524)(497,523)
(498,525)(499,530)(500,529)(501,531)(502,527)(503,526)(504,528);
s2 := Sym(576)!( 1,145)( 2,147)( 3,146)( 4,151)( 5,153)( 6,152)( 7,148)
( 8,150)( 9,149)( 10,154)( 11,156)( 12,155)( 13,160)( 14,162)( 15,161)
( 16,157)( 17,159)( 18,158)( 19,163)( 20,165)( 21,164)( 22,169)( 23,171)
( 24,170)( 25,166)( 26,168)( 27,167)( 28,172)( 29,174)( 30,173)( 31,178)
( 32,180)( 33,179)( 34,175)( 35,177)( 36,176)( 37,181)( 38,183)( 39,182)
( 40,187)( 41,189)( 42,188)( 43,184)( 44,186)( 45,185)( 46,190)( 47,192)
( 48,191)( 49,196)( 50,198)( 51,197)( 52,193)( 53,195)( 54,194)( 55,199)
( 56,201)( 57,200)( 58,205)( 59,207)( 60,206)( 61,202)( 62,204)( 63,203)
( 64,208)( 65,210)( 66,209)( 67,214)( 68,216)( 69,215)( 70,211)( 71,213)
( 72,212)( 73,217)( 74,219)( 75,218)( 76,223)( 77,225)( 78,224)( 79,220)
( 80,222)( 81,221)( 82,226)( 83,228)( 84,227)( 85,232)( 86,234)( 87,233)
( 88,229)( 89,231)( 90,230)( 91,235)( 92,237)( 93,236)( 94,241)( 95,243)
( 96,242)( 97,238)( 98,240)( 99,239)(100,244)(101,246)(102,245)(103,250)
(104,252)(105,251)(106,247)(107,249)(108,248)(109,253)(110,255)(111,254)
(112,259)(113,261)(114,260)(115,256)(116,258)(117,257)(118,262)(119,264)
(120,263)(121,268)(122,270)(123,269)(124,265)(125,267)(126,266)(127,271)
(128,273)(129,272)(130,277)(131,279)(132,278)(133,274)(134,276)(135,275)
(136,280)(137,282)(138,281)(139,286)(140,288)(141,287)(142,283)(143,285)
(144,284)(289,433)(290,435)(291,434)(292,439)(293,441)(294,440)(295,436)
(296,438)(297,437)(298,442)(299,444)(300,443)(301,448)(302,450)(303,449)
(304,445)(305,447)(306,446)(307,451)(308,453)(309,452)(310,457)(311,459)
(312,458)(313,454)(314,456)(315,455)(316,460)(317,462)(318,461)(319,466)
(320,468)(321,467)(322,463)(323,465)(324,464)(325,469)(326,471)(327,470)
(328,475)(329,477)(330,476)(331,472)(332,474)(333,473)(334,478)(335,480)
(336,479)(337,484)(338,486)(339,485)(340,481)(341,483)(342,482)(343,487)
(344,489)(345,488)(346,493)(347,495)(348,494)(349,490)(350,492)(351,491)
(352,496)(353,498)(354,497)(355,502)(356,504)(357,503)(358,499)(359,501)
(360,500)(361,505)(362,507)(363,506)(364,511)(365,513)(366,512)(367,508)
(368,510)(369,509)(370,514)(371,516)(372,515)(373,520)(374,522)(375,521)
(376,517)(377,519)(378,518)(379,523)(380,525)(381,524)(382,529)(383,531)
(384,530)(385,526)(386,528)(387,527)(388,532)(389,534)(390,533)(391,538)
(392,540)(393,539)(394,535)(395,537)(396,536)(397,541)(398,543)(399,542)
(400,547)(401,549)(402,548)(403,544)(404,546)(405,545)(406,550)(407,552)
(408,551)(409,556)(410,558)(411,557)(412,553)(413,555)(414,554)(415,559)
(416,561)(417,560)(418,565)(419,567)(420,566)(421,562)(422,564)(423,563)
(424,568)(425,570)(426,569)(427,574)(428,576)(429,575)(430,571)(431,573)
(432,572);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0 >;
References : None.
to this polytope