Polytope of Type {24,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,12}*1152e
if this polytope has a name.
Group : SmallGroup(1152,32543)
Rank : 3
Schlafli Type : {24,12}
Number of vertices, edges, etc : 48, 288, 24
Order of s0s1s2 : 12
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,12}*576a
   3-fold quotients : {24,4}*384b, {8,12}*384b
   4-fold quotients : {12,12}*288a
   6-fold quotients : {4,12}*192a, {12,4}*192a
   8-fold quotients : {6,12}*144a, {12,6}*144a
   9-fold quotients : {8,4}*128b
   12-fold quotients : {4,12}*96a, {12,4}*96a
   16-fold quotients : {6,6}*72a
   18-fold quotients : {4,4}*64
   24-fold quotients : {2,12}*48, {12,2}*48, {4,6}*48a, {6,4}*48a
   36-fold quotients : {4,4}*32
   48-fold quotients : {2,6}*24, {6,2}*24
   72-fold quotients : {2,4}*16, {4,2}*16
   96-fold quotients : {2,3}*12, {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 73)(  2, 80)(  3, 78)(  4, 79)(  5, 77)(  6, 75)(  7, 76)(  8, 74)
(  9, 81)( 10, 82)( 11, 89)( 12, 87)( 13, 88)( 14, 86)( 15, 84)( 16, 85)
( 17, 83)( 18, 90)( 19, 91)( 20, 98)( 21, 96)( 22, 97)( 23, 95)( 24, 93)
( 25, 94)( 26, 92)( 27, 99)( 28,100)( 29,107)( 30,105)( 31,106)( 32,104)
( 33,102)( 34,103)( 35,101)( 36,108)( 37,136)( 38,143)( 39,141)( 40,142)
( 41,140)( 42,138)( 43,139)( 44,137)( 45,144)( 46,127)( 47,134)( 48,132)
( 49,133)( 50,131)( 51,129)( 52,130)( 53,128)( 54,135)( 55,118)( 56,125)
( 57,123)( 58,124)( 59,122)( 60,120)( 61,121)( 62,119)( 63,126)( 64,109)
( 65,116)( 66,114)( 67,115)( 68,113)( 69,111)( 70,112)( 71,110)( 72,117);;
s1 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 34)( 26, 36)
( 27, 35)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)
( 53, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)( 61, 70)
( 62, 72)( 63, 71)( 73,112)( 74,114)( 75,113)( 76,109)( 77,111)( 78,110)
( 79,115)( 80,117)( 81,116)( 82,121)( 83,123)( 84,122)( 85,118)( 86,120)
( 87,119)( 88,124)( 89,126)( 90,125)( 91,139)( 92,141)( 93,140)( 94,136)
( 95,138)( 96,137)( 97,142)( 98,144)( 99,143)(100,130)(101,132)(102,131)
(103,127)(104,129)(105,128)(106,133)(107,135)(108,134);;
s2 := (  1, 77)(  2, 79)(  3, 75)(  4, 80)(  5, 73)(  6, 78)(  7, 74)(  8, 76)
(  9, 81)( 10, 86)( 11, 88)( 12, 84)( 13, 89)( 14, 82)( 15, 87)( 16, 83)
( 17, 85)( 18, 90)( 19, 95)( 20, 97)( 21, 93)( 22, 98)( 23, 91)( 24, 96)
( 25, 92)( 26, 94)( 27, 99)( 28,104)( 29,106)( 30,102)( 31,107)( 32,100)
( 33,105)( 34,101)( 35,103)( 36,108)( 37,113)( 38,115)( 39,111)( 40,116)
( 41,109)( 42,114)( 43,110)( 44,112)( 45,117)( 46,122)( 47,124)( 48,120)
( 49,125)( 50,118)( 51,123)( 52,119)( 53,121)( 54,126)( 55,131)( 56,133)
( 57,129)( 58,134)( 59,127)( 60,132)( 61,128)( 62,130)( 63,135)( 64,140)
( 65,142)( 66,138)( 67,143)( 68,136)( 69,141)( 70,137)( 71,139)( 72,144);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(144)!(  1, 73)(  2, 80)(  3, 78)(  4, 79)(  5, 77)(  6, 75)(  7, 76)
(  8, 74)(  9, 81)( 10, 82)( 11, 89)( 12, 87)( 13, 88)( 14, 86)( 15, 84)
( 16, 85)( 17, 83)( 18, 90)( 19, 91)( 20, 98)( 21, 96)( 22, 97)( 23, 95)
( 24, 93)( 25, 94)( 26, 92)( 27, 99)( 28,100)( 29,107)( 30,105)( 31,106)
( 32,104)( 33,102)( 34,103)( 35,101)( 36,108)( 37,136)( 38,143)( 39,141)
( 40,142)( 41,140)( 42,138)( 43,139)( 44,137)( 45,144)( 46,127)( 47,134)
( 48,132)( 49,133)( 50,131)( 51,129)( 52,130)( 53,128)( 54,135)( 55,118)
( 56,125)( 57,123)( 58,124)( 59,122)( 60,120)( 61,121)( 62,119)( 63,126)
( 64,109)( 65,116)( 66,114)( 67,115)( 68,113)( 69,111)( 70,112)( 71,110)
( 72,117);
s1 := Sym(144)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 34)
( 26, 36)( 27, 35)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)
( 48, 50)( 53, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)
( 61, 70)( 62, 72)( 63, 71)( 73,112)( 74,114)( 75,113)( 76,109)( 77,111)
( 78,110)( 79,115)( 80,117)( 81,116)( 82,121)( 83,123)( 84,122)( 85,118)
( 86,120)( 87,119)( 88,124)( 89,126)( 90,125)( 91,139)( 92,141)( 93,140)
( 94,136)( 95,138)( 96,137)( 97,142)( 98,144)( 99,143)(100,130)(101,132)
(102,131)(103,127)(104,129)(105,128)(106,133)(107,135)(108,134);
s2 := Sym(144)!(  1, 77)(  2, 79)(  3, 75)(  4, 80)(  5, 73)(  6, 78)(  7, 74)
(  8, 76)(  9, 81)( 10, 86)( 11, 88)( 12, 84)( 13, 89)( 14, 82)( 15, 87)
( 16, 83)( 17, 85)( 18, 90)( 19, 95)( 20, 97)( 21, 93)( 22, 98)( 23, 91)
( 24, 96)( 25, 92)( 26, 94)( 27, 99)( 28,104)( 29,106)( 30,102)( 31,107)
( 32,100)( 33,105)( 34,101)( 35,103)( 36,108)( 37,113)( 38,115)( 39,111)
( 40,116)( 41,109)( 42,114)( 43,110)( 44,112)( 45,117)( 46,122)( 47,124)
( 48,120)( 49,125)( 50,118)( 51,123)( 52,119)( 53,121)( 54,126)( 55,131)
( 56,133)( 57,129)( 58,134)( 59,127)( 60,132)( 61,128)( 62,130)( 63,135)
( 64,140)( 65,142)( 66,138)( 67,143)( 68,136)( 69,141)( 70,137)( 71,139)
( 72,144);
poly := sub<Sym(144)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0 >; 
 
References : None.
to this polytope