Polytope of Type {8,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,32552)
Rank : 3
Schlafli Type : {8,4}
Number of vertices, edges, etc : 144, 288, 72
Order of s0s1s2 : 12
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4}*576
   4-fold quotients : {4,4}*288
   8-fold quotients : {4,4}*144
   9-fold quotients : {8,4}*128b
   16-fold quotients : {4,4}*72
   18-fold quotients : {4,4}*64
   36-fold quotients : {4,4}*32
   72-fold quotients : {2,4}*16, {4,2}*16
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 73)(  2, 74)(  3, 75)(  4, 81)(  5, 79)(  6, 80)(  7, 77)(  8, 78)
(  9, 76)( 10, 82)( 11, 83)( 12, 84)( 13, 90)( 14, 88)( 15, 89)( 16, 86)
( 17, 87)( 18, 85)( 19, 91)( 20, 92)( 21, 93)( 22, 99)( 23, 97)( 24, 98)
( 25, 95)( 26, 96)( 27, 94)( 28,100)( 29,101)( 30,102)( 31,108)( 32,106)
( 33,107)( 34,104)( 35,105)( 36,103)( 37,136)( 38,137)( 39,138)( 40,144)
( 41,142)( 42,143)( 43,140)( 44,141)( 45,139)( 46,127)( 47,128)( 48,129)
( 49,135)( 50,133)( 51,134)( 52,131)( 53,132)( 54,130)( 55,118)( 56,119)
( 57,120)( 58,126)( 59,124)( 60,125)( 61,122)( 62,123)( 63,121)( 64,109)
( 65,110)( 66,111)( 67,117)( 68,115)( 69,116)( 70,113)( 71,114)( 72,112);;
s1 := (  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)( 20, 33)
( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)( 38, 42)
( 39, 44)( 41, 45)( 47, 51)( 48, 53)( 50, 54)( 55, 64)( 56, 69)( 57, 71)
( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73,109)( 74,114)
( 75,116)( 76,112)( 77,117)( 78,110)( 79,115)( 80,111)( 81,113)( 82,118)
( 83,123)( 84,125)( 85,121)( 86,126)( 87,119)( 88,124)( 89,120)( 90,122)
( 91,136)( 92,141)( 93,143)( 94,139)( 95,144)( 96,137)( 97,142)( 98,138)
( 99,140)(100,127)(101,132)(102,134)(103,130)(104,135)(105,128)(106,133)
(107,129)(108,131);;
s2 := (  1, 74)(  2, 73)(  3, 75)(  4, 78)(  5, 77)(  6, 76)(  7, 79)(  8, 81)
(  9, 80)( 10, 83)( 11, 82)( 12, 84)( 13, 87)( 14, 86)( 15, 85)( 16, 88)
( 17, 90)( 18, 89)( 19, 92)( 20, 91)( 21, 93)( 22, 96)( 23, 95)( 24, 94)
( 25, 97)( 26, 99)( 27, 98)( 28,101)( 29,100)( 30,102)( 31,105)( 32,104)
( 33,103)( 34,106)( 35,108)( 36,107)( 37,110)( 38,109)( 39,111)( 40,114)
( 41,113)( 42,112)( 43,115)( 44,117)( 45,116)( 46,119)( 47,118)( 48,120)
( 49,123)( 50,122)( 51,121)( 52,124)( 53,126)( 54,125)( 55,128)( 56,127)
( 57,129)( 58,132)( 59,131)( 60,130)( 61,133)( 62,135)( 63,134)( 64,137)
( 65,136)( 66,138)( 67,141)( 68,140)( 69,139)( 70,142)( 71,144)( 72,143);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(144)!(  1, 73)(  2, 74)(  3, 75)(  4, 81)(  5, 79)(  6, 80)(  7, 77)
(  8, 78)(  9, 76)( 10, 82)( 11, 83)( 12, 84)( 13, 90)( 14, 88)( 15, 89)
( 16, 86)( 17, 87)( 18, 85)( 19, 91)( 20, 92)( 21, 93)( 22, 99)( 23, 97)
( 24, 98)( 25, 95)( 26, 96)( 27, 94)( 28,100)( 29,101)( 30,102)( 31,108)
( 32,106)( 33,107)( 34,104)( 35,105)( 36,103)( 37,136)( 38,137)( 39,138)
( 40,144)( 41,142)( 42,143)( 43,140)( 44,141)( 45,139)( 46,127)( 47,128)
( 48,129)( 49,135)( 50,133)( 51,134)( 52,131)( 53,132)( 54,130)( 55,118)
( 56,119)( 57,120)( 58,126)( 59,124)( 60,125)( 61,122)( 62,123)( 63,121)
( 64,109)( 65,110)( 66,111)( 67,117)( 68,115)( 69,116)( 70,113)( 71,114)
( 72,112);
s1 := Sym(144)!(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)
( 20, 33)( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)
( 38, 42)( 39, 44)( 41, 45)( 47, 51)( 48, 53)( 50, 54)( 55, 64)( 56, 69)
( 57, 71)( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73,109)
( 74,114)( 75,116)( 76,112)( 77,117)( 78,110)( 79,115)( 80,111)( 81,113)
( 82,118)( 83,123)( 84,125)( 85,121)( 86,126)( 87,119)( 88,124)( 89,120)
( 90,122)( 91,136)( 92,141)( 93,143)( 94,139)( 95,144)( 96,137)( 97,142)
( 98,138)( 99,140)(100,127)(101,132)(102,134)(103,130)(104,135)(105,128)
(106,133)(107,129)(108,131);
s2 := Sym(144)!(  1, 74)(  2, 73)(  3, 75)(  4, 78)(  5, 77)(  6, 76)(  7, 79)
(  8, 81)(  9, 80)( 10, 83)( 11, 82)( 12, 84)( 13, 87)( 14, 86)( 15, 85)
( 16, 88)( 17, 90)( 18, 89)( 19, 92)( 20, 91)( 21, 93)( 22, 96)( 23, 95)
( 24, 94)( 25, 97)( 26, 99)( 27, 98)( 28,101)( 29,100)( 30,102)( 31,105)
( 32,104)( 33,103)( 34,106)( 35,108)( 36,107)( 37,110)( 38,109)( 39,111)
( 40,114)( 41,113)( 42,112)( 43,115)( 44,117)( 45,116)( 46,119)( 47,118)
( 48,120)( 49,123)( 50,122)( 51,121)( 52,124)( 53,126)( 54,125)( 55,128)
( 56,127)( 57,129)( 58,132)( 59,131)( 60,130)( 61,133)( 62,135)( 63,134)
( 64,137)( 65,136)( 66,138)( 67,141)( 68,140)( 69,139)( 70,142)( 71,144)
( 72,143);
poly := sub<Sym(144)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 
References : None.
to this polytope